输入问题...
微积分学 示例
解题步骤 1
由于 对于 是常数,所以将 移到积分外。
解题步骤 2
解题步骤 2.1
设 。求 。
解题步骤 2.1.1
对 求导。
解题步骤 2.1.2
求微分。
解题步骤 2.1.2.1
根据加法法则, 对 的导数是 。
解题步骤 2.1.2.2
因为 对于 是常数,所以 对 的导数为 。
解题步骤 2.1.3
计算 。
解题步骤 2.1.3.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 2.1.3.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 2.1.3.3
将 乘以 。
解题步骤 2.1.4
从 中减去 。
解题步骤 2.2
将下限代入替换 中的 。
解题步骤 2.3
化简。
解题步骤 2.3.1
化简每一项。
解题步骤 2.3.1.1
对 进行 次方运算。
解题步骤 2.3.1.2
将 乘以 。
解题步骤 2.3.2
从 中减去 。
解题步骤 2.4
将上限代入替换 中的 。
解题步骤 2.5
化简。
解题步骤 2.5.1
化简每一项。
解题步骤 2.5.1.1
对 进行 次方运算。
解题步骤 2.5.1.2
将 乘以 。
解题步骤 2.5.2
从 中减去 。
解题步骤 2.6
求得的 和 的值将用来计算定积分。
解题步骤 2.7
使用 、 以及积分的新极限重写该问题。
解题步骤 3
解题步骤 3.1
将负号移到分数的前面。
解题步骤 3.2
组合 和 。
解题步骤 4
由于 对于 是常数,所以将 移到积分外。
解题步骤 5
将 乘以 。
解题步骤 6
由于 对于 是常数,所以将 移到积分外。
解题步骤 7
解题步骤 7.1
组合 和 。
解题步骤 7.2
约去 和 的公因数。
解题步骤 7.2.1
从 中分解出因数 。
解题步骤 7.2.2
约去公因数。
解题步骤 7.2.2.1
从 中分解出因数 。
解题步骤 7.2.2.2
约去公因数。
解题步骤 7.2.2.3
重写表达式。
解题步骤 7.2.2.4
用 除以 。
解题步骤 8
根据幂法则, 对 的积分是 。
解题步骤 9
组合 和 。
解题步骤 10
解题步骤 10.1
计算 在 处和在 处的值。
解题步骤 10.2
化简。
解题步骤 10.2.1
对 进行 次方运算。
解题步骤 10.2.2
约去 和 的公因数。
解题步骤 10.2.2.1
从 中分解出因数 。
解题步骤 10.2.2.2
约去公因数。
解题步骤 10.2.2.2.1
从 中分解出因数 。
解题步骤 10.2.2.2.2
约去公因数。
解题步骤 10.2.2.2.3
重写表达式。
解题步骤 10.2.2.2.4
用 除以 。
解题步骤 10.2.3
对 进行 次方运算。
解题步骤 10.2.4
要将 写成带有公分母的分数,请乘以 。
解题步骤 10.2.5
组合 和 。
解题步骤 10.2.6
在公分母上合并分子。
解题步骤 10.2.7
化简分子。
解题步骤 10.2.7.1
将 乘以 。
解题步骤 10.2.7.2
从 中减去 。
解题步骤 10.2.8
将负号移到分数的前面。
解题步骤 10.2.9
将 乘以 。
解题步骤 10.2.10
将 乘以 。
解题步骤 11
结果可以多种形式表示。
恰当形式:
小数形式:
带分数形式:
解题步骤 12