微积分学 示例

求区间上的绝对最大值与绝对最小值 f(x)=4x^3-34x^2+60x , 0<x<2.5
,
解题步骤 1
求驻点。
点击获取更多步骤...
解题步骤 1.1
求一阶导数。
点击获取更多步骤...
解题步骤 1.1.1
求一阶导数。
点击获取更多步骤...
解题步骤 1.1.1.1
根据加法法则, 的导数是
解题步骤 1.1.1.2
计算
点击获取更多步骤...
解题步骤 1.1.1.2.1
因为 对于 是常数,所以 的导数是
解题步骤 1.1.1.2.2
使用幂法则求微分,根据该法则, 等于 ,其中
解题步骤 1.1.1.2.3
乘以
解题步骤 1.1.1.3
计算
点击获取更多步骤...
解题步骤 1.1.1.3.1
因为 对于 是常数,所以 的导数是
解题步骤 1.1.1.3.2
使用幂法则求微分,根据该法则, 等于 ,其中
解题步骤 1.1.1.3.3
乘以
解题步骤 1.1.1.4
计算
点击获取更多步骤...
解题步骤 1.1.1.4.1
因为 对于 是常数,所以 的导数是
解题步骤 1.1.1.4.2
使用幂法则求微分,根据该法则, 等于 ,其中
解题步骤 1.1.1.4.3
乘以
解题步骤 1.1.2
的一阶导数是
解题步骤 1.2
将一阶导数设为等于 ,然后求解方程
点击获取更多步骤...
解题步骤 1.2.1
将一阶导数设为等于
解题步骤 1.2.2
中分解出因数
点击获取更多步骤...
解题步骤 1.2.2.1
中分解出因数
解题步骤 1.2.2.2
中分解出因数
解题步骤 1.2.2.3
中分解出因数
解题步骤 1.2.2.4
中分解出因数
解题步骤 1.2.2.5
中分解出因数
解题步骤 1.2.3
中的每一项除以 并化简。
点击获取更多步骤...
解题步骤 1.2.3.1
中的每一项都除以
解题步骤 1.2.3.2
化简左边。
点击获取更多步骤...
解题步骤 1.2.3.2.1
约去 的公因数。
点击获取更多步骤...
解题步骤 1.2.3.2.1.1
约去公因数。
解题步骤 1.2.3.2.1.2
除以
解题步骤 1.2.3.3
化简右边。
点击获取更多步骤...
解题步骤 1.2.3.3.1
除以
解题步骤 1.2.4
使用二次公式求解。
解题步骤 1.2.5
的值代入二次公式中并求解
解题步骤 1.2.6
化简。
点击获取更多步骤...
解题步骤 1.2.6.1
化简分子。
点击获取更多步骤...
解题步骤 1.2.6.1.1
进行 次方运算。
解题步骤 1.2.6.1.2
乘以
点击获取更多步骤...
解题步骤 1.2.6.1.2.1
乘以
解题步骤 1.2.6.1.2.2
乘以
解题步骤 1.2.6.1.3
中减去
解题步骤 1.2.6.2
乘以
解题步骤 1.2.7
化简表达式以求 部分的解。
点击获取更多步骤...
解题步骤 1.2.7.1
化简分子。
点击获取更多步骤...
解题步骤 1.2.7.1.1
进行 次方运算。
解题步骤 1.2.7.1.2
乘以
点击获取更多步骤...
解题步骤 1.2.7.1.2.1
乘以
解题步骤 1.2.7.1.2.2
乘以
解题步骤 1.2.7.1.3
中减去
解题步骤 1.2.7.2
乘以
解题步骤 1.2.7.3
变换为
解题步骤 1.2.8
化简表达式以求 部分的解。
点击获取更多步骤...
解题步骤 1.2.8.1
化简分子。
点击获取更多步骤...
解题步骤 1.2.8.1.1
进行 次方运算。
解题步骤 1.2.8.1.2
乘以
点击获取更多步骤...
解题步骤 1.2.8.1.2.1
乘以
解题步骤 1.2.8.1.2.2
乘以
解题步骤 1.2.8.1.3
中减去
解题步骤 1.2.8.2
乘以
解题步骤 1.2.8.3
变换为
解题步骤 1.2.9
最终答案为两个解的组合。
解题步骤 1.3
求使导数无意义的值。
点击获取更多步骤...
解题步骤 1.3.1
表达式的定义域是除使表达式无定义的值外的所有实数。在本例中,不存在使表达式无定义的实数。
解题步骤 1.4
对每个导数为 或无意义的 值,计算
点击获取更多步骤...
解题步骤 1.4.1
处计算
点击获取更多步骤...
解题步骤 1.4.1.1
代入 替换
解题步骤 1.4.1.2
化简。
点击获取更多步骤...
解题步骤 1.4.1.2.1
化简每一项。
点击获取更多步骤...
解题步骤 1.4.1.2.1.1
运用乘积法则。
解题步骤 1.4.1.2.1.2
进行 次方运算。
解题步骤 1.4.1.2.1.3
约去 的公因数。
点击获取更多步骤...
解题步骤 1.4.1.2.1.3.1
中分解出因数
解题步骤 1.4.1.2.1.3.2
约去公因数。
解题步骤 1.4.1.2.1.3.3
重写表达式。
解题步骤 1.4.1.2.1.4
使用二项式定理。
解题步骤 1.4.1.2.1.5
化简每一项。
点击获取更多步骤...
解题步骤 1.4.1.2.1.5.1
进行 次方运算。
解题步骤 1.4.1.2.1.5.2
进行 次方运算。
解题步骤 1.4.1.2.1.5.3
乘以
解题步骤 1.4.1.2.1.5.4
乘以
解题步骤 1.4.1.2.1.5.5
重写为
点击获取更多步骤...
解题步骤 1.4.1.2.1.5.5.1
使用 ,将 重写成
解题步骤 1.4.1.2.1.5.5.2
运用幂法则并将指数相乘,
解题步骤 1.4.1.2.1.5.5.3
组合
解题步骤 1.4.1.2.1.5.5.4
约去 的公因数。
点击获取更多步骤...
解题步骤 1.4.1.2.1.5.5.4.1
约去公因数。
解题步骤 1.4.1.2.1.5.5.4.2
重写表达式。
解题步骤 1.4.1.2.1.5.5.5
计算指数。
解题步骤 1.4.1.2.1.5.6
乘以
解题步骤 1.4.1.2.1.5.7
重写为
解题步骤 1.4.1.2.1.5.8
进行 次方运算。
解题步骤 1.4.1.2.1.5.9
重写为
点击获取更多步骤...
解题步骤 1.4.1.2.1.5.9.1
中分解出因数
解题步骤 1.4.1.2.1.5.9.2
重写为
解题步骤 1.4.1.2.1.5.10
从根式下提出各项。
解题步骤 1.4.1.2.1.6
相加。
解题步骤 1.4.1.2.1.7
相加。
解题步骤 1.4.1.2.1.8
约去 的公因数。
点击获取更多步骤...
解题步骤 1.4.1.2.1.8.1
中分解出因数
解题步骤 1.4.1.2.1.8.2
中分解出因数
解题步骤 1.4.1.2.1.8.3
中分解出因数
解题步骤 1.4.1.2.1.8.4
约去公因数。
点击获取更多步骤...
解题步骤 1.4.1.2.1.8.4.1
中分解出因数
解题步骤 1.4.1.2.1.8.4.2
约去公因数。
解题步骤 1.4.1.2.1.8.4.3
重写表达式。
解题步骤 1.4.1.2.1.9
运用乘积法则。
解题步骤 1.4.1.2.1.10
进行 次方运算。
解题步骤 1.4.1.2.1.11
约去 的公因数。
点击获取更多步骤...
解题步骤 1.4.1.2.1.11.1
中分解出因数
解题步骤 1.4.1.2.1.11.2
中分解出因数
解题步骤 1.4.1.2.1.11.3
约去公因数。
解题步骤 1.4.1.2.1.11.4
重写表达式。
解题步骤 1.4.1.2.1.12
组合
解题步骤 1.4.1.2.1.13
重写为
解题步骤 1.4.1.2.1.14
使用 FOIL 方法展开
点击获取更多步骤...
解题步骤 1.4.1.2.1.14.1
运用分配律。
解题步骤 1.4.1.2.1.14.2
运用分配律。
解题步骤 1.4.1.2.1.14.3
运用分配律。
解题步骤 1.4.1.2.1.15
化简并合并同类项。
点击获取更多步骤...
解题步骤 1.4.1.2.1.15.1
化简每一项。
点击获取更多步骤...
解题步骤 1.4.1.2.1.15.1.1
乘以
解题步骤 1.4.1.2.1.15.1.2
移到 的左侧。
解题步骤 1.4.1.2.1.15.1.3
使用根数乘积法则进行合并。
解题步骤 1.4.1.2.1.15.1.4
乘以
解题步骤 1.4.1.2.1.15.1.5
重写为
解题步骤 1.4.1.2.1.15.1.6
假设各项均为正实数,从根式下提出各项。
解题步骤 1.4.1.2.1.15.2
相加。
解题步骤 1.4.1.2.1.15.3
相加。
解题步骤 1.4.1.2.1.16
约去 的公因数。
点击获取更多步骤...
解题步骤 1.4.1.2.1.16.1
中分解出因数
解题步骤 1.4.1.2.1.16.2
约去公因数。
点击获取更多步骤...
解题步骤 1.4.1.2.1.16.2.1
中分解出因数
解题步骤 1.4.1.2.1.16.2.2
约去公因数。
解题步骤 1.4.1.2.1.16.2.3
重写表达式。
解题步骤 1.4.1.2.1.17
将负号移到分数的前面。
解题步骤 1.4.1.2.1.18
约去 的公因数。
点击获取更多步骤...
解题步骤 1.4.1.2.1.18.1
中分解出因数
解题步骤 1.4.1.2.1.18.2
约去公因数。
解题步骤 1.4.1.2.1.18.3
重写表达式。
解题步骤 1.4.1.2.1.19
运用分配律。
解题步骤 1.4.1.2.1.20
乘以
解题步骤 1.4.1.2.2
要将 写成带有公分母的分数,请乘以
解题步骤 1.4.1.2.3
通过与 的合适因数相乘,将每一个表达式写成具有公分母 的形式。
点击获取更多步骤...
解题步骤 1.4.1.2.3.1
乘以
解题步骤 1.4.1.2.3.2
乘以
解题步骤 1.4.1.2.4
在公分母上合并分子。
解题步骤 1.4.1.2.5
化简分子。
点击获取更多步骤...
解题步骤 1.4.1.2.5.1
运用分配律。
解题步骤 1.4.1.2.5.2
乘以
解题步骤 1.4.1.2.5.3
乘以
解题步骤 1.4.1.2.5.4
运用分配律。
解题步骤 1.4.1.2.5.5
乘以
解题步骤 1.4.1.2.5.6
乘以
解题步骤 1.4.1.2.5.7
中减去
解题步骤 1.4.1.2.5.8
中减去
解题步骤 1.4.1.2.6
要将 写成带有公分母的分数,请乘以
解题步骤 1.4.1.2.7
组合
解题步骤 1.4.1.2.8
化简表达式。
点击获取更多步骤...
解题步骤 1.4.1.2.8.1
在公分母上合并分子。
解题步骤 1.4.1.2.8.2
乘以
解题步骤 1.4.1.2.8.3
相加。
解题步骤 1.4.1.2.9
要将 写成带有公分母的分数,请乘以
解题步骤 1.4.1.2.10
合并分数。
点击获取更多步骤...
解题步骤 1.4.1.2.10.1
组合
解题步骤 1.4.1.2.10.2
在公分母上合并分子。
解题步骤 1.4.1.2.11
化简分子。
点击获取更多步骤...
解题步骤 1.4.1.2.11.1
乘以
解题步骤 1.4.1.2.11.2
相加。
解题步骤 1.4.1.2.12
通过提取公因式进行化简。
点击获取更多步骤...
解题步骤 1.4.1.2.12.1
重写为
解题步骤 1.4.1.2.12.2
中分解出因数
解题步骤 1.4.1.2.12.3
中分解出因数
解题步骤 1.4.1.2.12.4
将负号移到分数的前面。
解题步骤 1.4.2
处计算
点击获取更多步骤...
解题步骤 1.4.2.1
代入 替换
解题步骤 1.4.2.2
化简。
点击获取更多步骤...
解题步骤 1.4.2.2.1
化简每一项。
点击获取更多步骤...
解题步骤 1.4.2.2.1.1
运用乘积法则。
解题步骤 1.4.2.2.1.2
进行 次方运算。
解题步骤 1.4.2.2.1.3
约去 的公因数。
点击获取更多步骤...
解题步骤 1.4.2.2.1.3.1
中分解出因数
解题步骤 1.4.2.2.1.3.2
约去公因数。
解题步骤 1.4.2.2.1.3.3
重写表达式。
解题步骤 1.4.2.2.1.4
使用二项式定理。
解题步骤 1.4.2.2.1.5
化简每一项。
点击获取更多步骤...
解题步骤 1.4.2.2.1.5.1
进行 次方运算。
解题步骤 1.4.2.2.1.5.2
进行 次方运算。
解题步骤 1.4.2.2.1.5.3
乘以
解题步骤 1.4.2.2.1.5.4
乘以
解题步骤 1.4.2.2.1.5.5
乘以
解题步骤 1.4.2.2.1.5.6
运用乘积法则。
解题步骤 1.4.2.2.1.5.7
进行 次方运算。
解题步骤 1.4.2.2.1.5.8
乘以
解题步骤 1.4.2.2.1.5.9
重写为
点击获取更多步骤...
解题步骤 1.4.2.2.1.5.9.1
使用 ,将 重写成
解题步骤 1.4.2.2.1.5.9.2
运用幂法则并将指数相乘,
解题步骤 1.4.2.2.1.5.9.3
组合
解题步骤 1.4.2.2.1.5.9.4
约去 的公因数。
点击获取更多步骤...
解题步骤 1.4.2.2.1.5.9.4.1
约去公因数。
解题步骤 1.4.2.2.1.5.9.4.2
重写表达式。
解题步骤 1.4.2.2.1.5.9.5
计算指数。
解题步骤 1.4.2.2.1.5.10
乘以
解题步骤 1.4.2.2.1.5.11
运用乘积法则。
解题步骤 1.4.2.2.1.5.12
进行 次方运算。
解题步骤 1.4.2.2.1.5.13
重写为
解题步骤 1.4.2.2.1.5.14
进行 次方运算。
解题步骤 1.4.2.2.1.5.15
重写为
点击获取更多步骤...
解题步骤 1.4.2.2.1.5.15.1
中分解出因数
解题步骤 1.4.2.2.1.5.15.2
重写为
解题步骤 1.4.2.2.1.5.16
从根式下提出各项。
解题步骤 1.4.2.2.1.5.17
乘以
解题步骤 1.4.2.2.1.6
相加。
解题步骤 1.4.2.2.1.7
中减去
解题步骤 1.4.2.2.1.8
约去 的公因数。
点击获取更多步骤...
解题步骤 1.4.2.2.1.8.1
中分解出因数
解题步骤 1.4.2.2.1.8.2
中分解出因数
解题步骤 1.4.2.2.1.8.3
中分解出因数
解题步骤 1.4.2.2.1.8.4
约去公因数。
点击获取更多步骤...
解题步骤 1.4.2.2.1.8.4.1
中分解出因数
解题步骤 1.4.2.2.1.8.4.2
约去公因数。
解题步骤 1.4.2.2.1.8.4.3
重写表达式。
解题步骤 1.4.2.2.1.9
运用乘积法则。
解题步骤 1.4.2.2.1.10
进行 次方运算。
解题步骤 1.4.2.2.1.11
约去 的公因数。
点击获取更多步骤...
解题步骤 1.4.2.2.1.11.1
中分解出因数
解题步骤 1.4.2.2.1.11.2
中分解出因数
解题步骤 1.4.2.2.1.11.3
约去公因数。
解题步骤 1.4.2.2.1.11.4
重写表达式。
解题步骤 1.4.2.2.1.12
组合
解题步骤 1.4.2.2.1.13
重写为
解题步骤 1.4.2.2.1.14
使用 FOIL 方法展开
点击获取更多步骤...
解题步骤 1.4.2.2.1.14.1
运用分配律。
解题步骤 1.4.2.2.1.14.2
运用分配律。
解题步骤 1.4.2.2.1.14.3
运用分配律。
解题步骤 1.4.2.2.1.15
化简并合并同类项。
点击获取更多步骤...
解题步骤 1.4.2.2.1.15.1
化简每一项。
点击获取更多步骤...
解题步骤 1.4.2.2.1.15.1.1
乘以
解题步骤 1.4.2.2.1.15.1.2
乘以
解题步骤 1.4.2.2.1.15.1.3
乘以
解题步骤 1.4.2.2.1.15.1.4
乘以
点击获取更多步骤...
解题步骤 1.4.2.2.1.15.1.4.1
乘以
解题步骤 1.4.2.2.1.15.1.4.2
乘以
解题步骤 1.4.2.2.1.15.1.4.3
进行 次方运算。
解题步骤 1.4.2.2.1.15.1.4.4
进行 次方运算。
解题步骤 1.4.2.2.1.15.1.4.5
使用幂法则 合并指数。
解题步骤 1.4.2.2.1.15.1.4.6
相加。
解题步骤 1.4.2.2.1.15.1.5
重写为
点击获取更多步骤...
解题步骤 1.4.2.2.1.15.1.5.1
使用 ,将 重写成
解题步骤 1.4.2.2.1.15.1.5.2
运用幂法则并将指数相乘,
解题步骤 1.4.2.2.1.15.1.5.3
组合
解题步骤 1.4.2.2.1.15.1.5.4
约去 的公因数。
点击获取更多步骤...
解题步骤 1.4.2.2.1.15.1.5.4.1
约去公因数。
解题步骤 1.4.2.2.1.15.1.5.4.2
重写表达式。
解题步骤 1.4.2.2.1.15.1.5.5
计算指数。
解题步骤 1.4.2.2.1.15.2
相加。
解题步骤 1.4.2.2.1.15.3
中减去
解题步骤 1.4.2.2.1.16
约去 的公因数。
点击获取更多步骤...
解题步骤 1.4.2.2.1.16.1
中分解出因数
解题步骤 1.4.2.2.1.16.2
约去公因数。
点击获取更多步骤...
解题步骤 1.4.2.2.1.16.2.1
中分解出因数
解题步骤 1.4.2.2.1.16.2.2
约去公因数。
解题步骤 1.4.2.2.1.16.2.3
重写表达式。
解题步骤 1.4.2.2.1.17
将负号移到分数的前面。
解题步骤 1.4.2.2.1.18
约去 的公因数。
点击获取更多步骤...
解题步骤 1.4.2.2.1.18.1
中分解出因数
解题步骤 1.4.2.2.1.18.2
约去公因数。
解题步骤 1.4.2.2.1.18.3
重写表达式。
解题步骤 1.4.2.2.1.19
运用分配律。
解题步骤 1.4.2.2.1.20
乘以
解题步骤 1.4.2.2.1.21
乘以
解题步骤 1.4.2.2.2
要将 写成带有公分母的分数,请乘以
解题步骤 1.4.2.2.3
通过与 的合适因数相乘,将每一个表达式写成具有公分母 的形式。
点击获取更多步骤...
解题步骤 1.4.2.2.3.1
乘以
解题步骤 1.4.2.2.3.2
乘以
解题步骤 1.4.2.2.4
在公分母上合并分子。
解题步骤 1.4.2.2.5
化简分子。
点击获取更多步骤...
解题步骤 1.4.2.2.5.1
运用分配律。
解题步骤 1.4.2.2.5.2
乘以
解题步骤 1.4.2.2.5.3
乘以
解题步骤 1.4.2.2.5.4
运用分配律。
解题步骤 1.4.2.2.5.5
乘以
解题步骤 1.4.2.2.5.6
乘以
解题步骤 1.4.2.2.5.7
中减去
解题步骤 1.4.2.2.5.8
相加。
解题步骤 1.4.2.2.6
要将 写成带有公分母的分数,请乘以
解题步骤 1.4.2.2.7
组合
解题步骤 1.4.2.2.8
化简表达式。
点击获取更多步骤...
解题步骤 1.4.2.2.8.1
在公分母上合并分子。
解题步骤 1.4.2.2.8.2
乘以
解题步骤 1.4.2.2.8.3
相加。
解题步骤 1.4.2.2.9
要将 写成带有公分母的分数,请乘以
解题步骤 1.4.2.2.10
合并分数。
点击获取更多步骤...
解题步骤 1.4.2.2.10.1
组合
解题步骤 1.4.2.2.10.2
在公分母上合并分子。
解题步骤 1.4.2.2.11
化简分子。
点击获取更多步骤...
解题步骤 1.4.2.2.11.1
乘以
解题步骤 1.4.2.2.11.2
中减去
解题步骤 1.4.2.2.12
通过提取公因式进行化简。
点击获取更多步骤...
解题步骤 1.4.2.2.12.1
重写为
解题步骤 1.4.2.2.12.2
中分解出因数
解题步骤 1.4.2.2.12.3
中分解出因数
解题步骤 1.4.2.2.12.4
将负号移到分数的前面。
解题步骤 1.4.3
列出所有的点。
解题步骤 2
排除不在区间内的点。
解题步骤 3
使用一阶导数判别法来确定哪些点可能有极大值或极小值。
点击获取更多步骤...
解题步骤 3.1
根据使一阶导数为 或无意义的 值,将 分割为不同的区间。
解题步骤 3.2
将区间 内的任一数字(例如 )代入一阶导数 中,检查所得结果是负数还是正数。
点击获取更多步骤...
解题步骤 3.2.1
使用表达式中的 替换变量
解题步骤 3.2.2
化简结果。
点击获取更多步骤...
解题步骤 3.2.2.1
化简每一项。
点击获取更多步骤...
解题步骤 3.2.2.1.1
进行任意正数次方的运算均得到
解题步骤 3.2.2.1.2
乘以
解题步骤 3.2.2.1.3
乘以
解题步骤 3.2.2.2
通过加上各数进行化简。
点击获取更多步骤...
解题步骤 3.2.2.2.1
相加。
解题步骤 3.2.2.2.2
相加。
解题步骤 3.2.2.3
最终答案为
解题步骤 3.3
将区间 内的任一数字(例如 )代入一阶导数 中,检查所得结果是负数还是正数。
点击获取更多步骤...
解题步骤 3.3.1
使用表达式中的 替换变量
解题步骤 3.3.2
化简结果。
点击获取更多步骤...
解题步骤 3.3.2.1
化简每一项。
点击获取更多步骤...
解题步骤 3.3.2.1.1
进行 次方运算。
解题步骤 3.3.2.1.2
乘以
解题步骤 3.3.2.1.3
乘以
解题步骤 3.3.2.2
通过相加和相减进行化简。
点击获取更多步骤...
解题步骤 3.3.2.2.1
中减去
解题步骤 3.3.2.2.2
相加。
解题步骤 3.3.2.3
最终答案为
解题步骤 3.4
将区间 内的任一数字(例如 )代入一阶导数 中,检查所得结果是负数还是正数。
点击获取更多步骤...
解题步骤 3.4.1
使用表达式中的 替换变量
解题步骤 3.4.2
化简结果。
点击获取更多步骤...
解题步骤 3.4.2.1
化简每一项。
点击获取更多步骤...
解题步骤 3.4.2.1.1
进行 次方运算。
解题步骤 3.4.2.1.2
乘以
解题步骤 3.4.2.1.3
乘以
解题步骤 3.4.2.2
通过相加和相减进行化简。
点击获取更多步骤...
解题步骤 3.4.2.2.1
中减去
解题步骤 3.4.2.2.2
相加。
解题步骤 3.4.2.3
最终答案为
解题步骤 3.5
由于一阶导数在 周围从正号变为负号,因此 是极大值。
是一个极大值
解题步骤 3.6
由于一阶导数在 周围从负号变为正号,因此 是极小值。
是一个极小值
解题步骤 3.7
这些是 的局部极值。
是一个极大值
是一个极小值
是一个极大值
是一个极小值
解题步骤 4
将每个 的值对应所得的 的值进行比较,以确定给定区间上的最大绝对值和最小绝对值。最大值在取最高值 时产生,而最小值在取最低值 时产生。
最大绝对值:
没有绝对最小值
解题步骤 5