输入问题...
微积分学 示例
解题步骤 1
在等式两边同时取微分
解题步骤 2
因为 对于 是常数,所以 对 的导数为 。
解题步骤 3
解题步骤 3.1
根据加法法则, 对 的导数是 。
解题步骤 3.2
计算 。
解题步骤 3.2.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 3.2.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 3.2.3
将 乘以 。
解题步骤 3.3
计算 。
解题步骤 3.3.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 3.3.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 3.3.3
将 乘以 。
解题步骤 3.4
重新排序项。
解题步骤 4
通过设置方程左边等于右边来进行方程变形。
解题步骤 5
解题步骤 5.1
因为 在方程的右边,所以要交换两边使其出现在方程的左边。
解题步骤 5.2
从等式两边同时减去 。
解题步骤 5.3
将 中的每一项除以 并化简。
解题步骤 5.3.1
将 中的每一项都除以 。
解题步骤 5.3.2
化简左边。
解题步骤 5.3.2.1
约去 的公因数。
解题步骤 5.3.2.1.1
约去公因数。
解题步骤 5.3.2.1.2
用 除以 。
解题步骤 5.3.3
化简右边。
解题步骤 5.3.3.1
用 除以 。
解题步骤 5.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
解题步骤 5.5
化简 。
解题步骤 5.5.1
将 重写为 。
解题步骤 5.5.1.1
从 中分解出因数 。
解题步骤 5.5.1.2
将 重写为 。
解题步骤 5.5.2
从根式下提出各项。
解题步骤 5.6
完全解为同时包括解的正数和负数部分的结果。
解题步骤 5.6.1
首先,利用 的正值求第一个解。
解题步骤 5.6.2
下一步,使用 的负值来求第二个解。
解题步骤 5.6.3
完全解为同时包括解的正数和负数部分的结果。
解题步骤 6
使用 替换 。
解题步骤 7
结果可以多种形式表示。
恰当形式:
小数形式: