输入问题...
微积分学 示例
解题步骤 1
解题步骤 1.1
使用乘积法则求微分,根据该法则, 等于 ,其中 且 。
解题步骤 1.2
对 的导数为 。
解题步骤 1.3
使用幂法则求微分。
解题步骤 1.3.1
组合 和 。
解题步骤 1.3.2
约去 的公因数。
解题步骤 1.3.2.1
约去公因数。
解题步骤 1.3.2.2
重写表达式。
解题步骤 1.3.3
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.3.4
将 乘以 。
解题步骤 2
解题步骤 2.1
求微分。
解题步骤 2.1.1
根据加法法则, 对 的导数是 。
解题步骤 2.1.2
因为 对于 是常数,所以 对 的导数为 。
解题步骤 2.2
对 的导数为 。
解题步骤 2.3
将 和 相加。
解题步骤 3
要求函数的极大值与极小值,请将导数设为等于 并求解。
解题步骤 4
解题步骤 4.1
求一阶导数。
解题步骤 4.1.1
使用乘积法则求微分,根据该法则, 等于 ,其中 且 。
解题步骤 4.1.2
对 的导数为 。
解题步骤 4.1.3
使用幂法则求微分。
解题步骤 4.1.3.1
组合 和 。
解题步骤 4.1.3.2
约去 的公因数。
解题步骤 4.1.3.2.1
约去公因数。
解题步骤 4.1.3.2.2
重写表达式。
解题步骤 4.1.3.3
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 4.1.3.4
将 乘以 。
解题步骤 4.2
对 的一阶导数是 。
解题步骤 5
解题步骤 5.1
将一阶导数设为等于 。
解题步骤 5.2
从等式两边同时减去 。
解题步骤 5.3
要求解 ,请利用对数的性质重写方程。
解题步骤 5.4
使用对数的定义将 重写成指数形式。如果 和 是正实数且 ,则 等价于 。
解题步骤 5.5
求解 。
解题步骤 5.5.1
将方程重写为 。
解题步骤 5.5.2
使用负指数规则 重写表达式。
解题步骤 6
解题步骤 6.1
将 中的参数设为小于等于 ,以求使表达式无意义的区间。
解题步骤 6.2
方程在分母等于 时无定义,平方根的自变量小于 或者对数的自变量小于或等于 。
解题步骤 7
要计算的驻点。
解题步骤 8
计算在 处的二阶导数。如果该二阶导数为正,那么这是一个极小值。如果为负,则为极大值。
解题步骤 9
解题步骤 9.1
将分子乘以分母的倒数。
解题步骤 9.2
将 乘以 。
解题步骤 10
因为二阶导数的值为正数,所以 是一个极小值。这被称为二阶导数试验法。
是一个极小值
解题步骤 11
解题步骤 11.1
使用表达式中的 替换变量 。
解题步骤 11.2
化简结果。
解题步骤 11.2.1
将 重写为 。
解题步骤 11.2.2
将 重写为 。
解题步骤 11.2.3
使用对数规则把 移到指数外部。
解题步骤 11.2.4
的自然对数为 。
解题步骤 11.2.5
将 乘以 。
解题步骤 11.2.6
的自然对数为 。
解题步骤 11.2.7
从 中减去 。
解题步骤 11.2.8
组合 和 。
解题步骤 11.2.9
将负号移到分数的前面。
解题步骤 11.2.10
最终答案为 。
解题步骤 12
这些是 的局部极值。
是一个局部最小值
解题步骤 13