输入问题...
微积分学 示例
,
解题步骤 1
解题步骤 1.1
求一阶导数。
解题步骤 1.1.1
求一阶导数。
解题步骤 1.1.1.1
根据加法法则, 对 的导数是 。
解题步骤 1.1.1.2
计算 。
解题步骤 1.1.1.2.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 1.1.1.2.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.1.1.2.3
将 乘以 。
解题步骤 1.1.1.3
使用常数法则求导。
解题步骤 1.1.1.3.1
因为 对于 是常数,所以 对 的导数为 。
解题步骤 1.1.1.3.2
将 和 相加。
解题步骤 1.1.2
对 的一阶导数是 。
解题步骤 1.2
将一阶导数设为等于 ,然后求解方程 。
解题步骤 1.2.1
将一阶导数设为等于 。
解题步骤 1.2.2
将 中的每一项除以 并化简。
解题步骤 1.2.2.1
将 中的每一项都除以 。
解题步骤 1.2.2.2
化简左边。
解题步骤 1.2.2.2.1
约去 的公因数。
解题步骤 1.2.2.2.1.1
约去公因数。
解题步骤 1.2.2.2.1.2
用 除以 。
解题步骤 1.2.2.3
化简右边。
解题步骤 1.2.2.3.1
用 除以 。
解题步骤 1.3
求使导数无意义的值。
解题步骤 1.3.1
表达式的定义域是除使表达式无定义的值外的所有实数。在本例中,不存在使表达式无定义的实数。
解题步骤 1.4
对每个导数为 或无意义的 值,计算 。
解题步骤 1.4.1
在 处计算
解题步骤 1.4.1.1
代入 替换 。
解题步骤 1.4.1.2
化简。
解题步骤 1.4.1.2.1
化简每一项。
解题步骤 1.4.1.2.1.1
对 进行任意正数次方的运算均得到 。
解题步骤 1.4.1.2.1.2
将 乘以 。
解题步骤 1.4.1.2.2
从 中减去 。
解题步骤 1.4.2
列出所有的点。
解题步骤 2
排除不在区间内的点。
解题步骤 3
解题步骤 3.1
在 处计算
解题步骤 3.1.1
代入 替换 。
解题步骤 3.1.2
化简。
解题步骤 3.1.2.1
化简每一项。
解题步骤 3.1.2.1.1
一的任意次幂都为一。
解题步骤 3.1.2.1.2
将 乘以 。
解题步骤 3.1.2.2
从 中减去 。
解题步骤 3.2
在 处计算
解题步骤 3.2.1
代入 替换 。
解题步骤 3.2.2
化简。
解题步骤 3.2.2.1
化简每一项。
解题步骤 3.2.2.1.1
通过指数相加将 乘以 。
解题步骤 3.2.2.1.1.1
将 乘以 。
解题步骤 3.2.2.1.1.1.1
对 进行 次方运算。
解题步骤 3.2.2.1.1.1.2
使用幂法则 合并指数。
解题步骤 3.2.2.1.1.2
将 和 相加。
解题步骤 3.2.2.1.2
对 进行 次方运算。
解题步骤 3.2.2.2
从 中减去 。
解题步骤 3.3
列出所有的点。
解题步骤 4
将每个 的值对应所得的 的值进行比较,以确定给定区间上的最大绝对值和最小绝对值。最大值在取最高值 时产生,而最小值在取最低值 时产生。
最大绝对值:
最小绝对值:
解题步骤 5