微积分学 示例

求区间上的绝对最大值与绝对最小值 f(x)=x^3
解题步骤 1
使用幂法则求微分,根据该法则, 等于 ,其中
解题步骤 2
求函数的二阶导数。
点击获取更多步骤...
解题步骤 2.1
因为 对于 是常数,所以 的导数是
解题步骤 2.2
使用幂法则求微分,根据该法则, 等于 ,其中
解题步骤 2.3
乘以
解题步骤 3
要求函数的极大值与极小值,请将导数设为等于 并求解。
解题步骤 4
求一阶导数。
点击获取更多步骤...
解题步骤 4.1
使用幂法则求微分,根据该法则, 等于 ,其中
解题步骤 4.2
的一阶导数是
解题步骤 5
将一阶导数设为等于 ,然后求解方程
点击获取更多步骤...
解题步骤 5.1
将一阶导数设为等于
解题步骤 5.2
中的每一项除以 并化简。
点击获取更多步骤...
解题步骤 5.2.1
中的每一项都除以
解题步骤 5.2.2
化简左边。
点击获取更多步骤...
解题步骤 5.2.2.1
约去 的公因数。
点击获取更多步骤...
解题步骤 5.2.2.1.1
约去公因数。
解题步骤 5.2.2.1.2
除以
解题步骤 5.2.3
化简右边。
点击获取更多步骤...
解题步骤 5.2.3.1
除以
解题步骤 5.3
取方程两边的指定根来消去方程左边的指数。
解题步骤 5.4
化简
点击获取更多步骤...
解题步骤 5.4.1
重写为
解题步骤 5.4.2
假设各项均为正实数,从根式下提出各项。
解题步骤 5.4.3
正负
解题步骤 6
求使导数无意义的值。
点击获取更多步骤...
解题步骤 6.1
表达式的定义域是除使表达式无定义的值外的所有实数。在本例中,不存在使表达式无定义的实数。
解题步骤 7
要计算的驻点。
解题步骤 8
计算在 处的二阶导数。如果该二阶导数为正,那么这是一个极小值。如果为负,则为极大值。
解题步骤 9
乘以
解题步骤 10
因为至少有一个点是 或使二阶导数无意义,所以使用一阶导数判别法。
点击获取更多步骤...
解题步骤 10.1
根据使一阶导数为 或无意义的 值,将 分割为不同的区间。
解题步骤 10.2
将区间 内的任一数字(例如 )代入一阶导数 中,检查所得结果是负数还是正数。
点击获取更多步骤...
解题步骤 10.2.1
使用表达式中的 替换变量
解题步骤 10.2.2
化简结果。
点击获取更多步骤...
解题步骤 10.2.2.1
进行 次方运算。
解题步骤 10.2.2.2
乘以
解题步骤 10.2.2.3
最终答案为
解题步骤 10.3
将区间 内的任一数字(例如 )代入一阶导数 中,检查所得结果是负数还是正数。
点击获取更多步骤...
解题步骤 10.3.1
使用表达式中的 替换变量
解题步骤 10.3.2
化简结果。
点击获取更多步骤...
解题步骤 10.3.2.1
进行 次方运算。
解题步骤 10.3.2.2
乘以
解题步骤 10.3.2.3
最终答案为
解题步骤 10.4
由于一阶导数在 周围没有改变符号,因此这不是极大值或极小值。
不存在极大值或极小值
解题步骤 10.5
对于 ,不存在局部最大值和最小值。
没有局部最大值或最小值
没有局部最大值或最小值
解题步骤 11