微积分学 示例

(0,2) पर स्पर्शज्या रेखा ज्ञात कीजिये y=2e^x+x , (0,2)
,
解题步骤 1
求一阶导数并计算 的值,从而求切线的斜率。
点击获取更多步骤...
解题步骤 1.1
根据加法法则, 的导数是
解题步骤 1.2
计算
点击获取更多步骤...
解题步骤 1.2.1
因为 对于 是常数,所以 的导数是
解题步骤 1.2.2
使用指数法则求微分,根据该法则, 等于 ,其中 =
解题步骤 1.3
使用幂法则求微分,根据该法则, 等于 ,其中
解题步骤 1.4
计算在 处的导数。
解题步骤 1.5
化简。
点击获取更多步骤...
解题步骤 1.5.1
化简每一项。
点击获取更多步骤...
解题步骤 1.5.1.1
任何数的 次方都是
解题步骤 1.5.1.2
乘以
解题步骤 1.5.2
相加。
解题步骤 2
将斜率及点值代入点斜式公式并求解
点击获取更多步骤...
解题步骤 2.1
使用斜率 和给定点 ,替换由斜率方程 产生的点斜式 中的
解题步骤 2.2
化简方程并保持点斜式。
解题步骤 2.3
求解
点击获取更多步骤...
解题步骤 2.3.1
相加。
解题步骤 2.3.2
在等式两边都加上
解题步骤 3