微积分学 示例

利用换元法来求积分 ((e^x+1)^2)/(e^x) 对 x 的积分
解题步骤 1
使 。然后使 ,以便 。使用 进行重写。
点击获取更多步骤...
解题步骤 1.1
。求
点击获取更多步骤...
解题步骤 1.1.1
求导。
解题步骤 1.1.2
根据加法法则, 的导数是
解题步骤 1.1.3
使用指数法则求微分,根据该法则, 等于 ,其中 =
解题步骤 1.1.4
使用常数法则求导。
点击获取更多步骤...
解题步骤 1.1.4.1
因为 对于 是常数,所以 的导数为
解题步骤 1.1.4.2
相加。
解题步骤 1.2
使用 重写该问题。
解题步骤 2
化简。
点击获取更多步骤...
解题步骤 2.1
约去 的公因数。
点击获取更多步骤...
解题步骤 2.1.1
约去公因数。
解题步骤 2.1.2
重写表达式。
解题步骤 2.2
乘以
解题步骤 3
根据幂法则, 的积分是
解题步骤 4
使用 替换所有出现的