输入问题...
微积分学 示例
解题步骤 1
解题步骤 1.1
设 。求 。
解题步骤 1.1.1
对 求导。
解题步骤 1.1.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.2
使用 和 重写该问题。
解题步骤 2
解题步骤 2.1
将 重写为 。
解题步骤 2.1.1
使用 ,将 重写成 。
解题步骤 2.1.2
运用幂法则并将指数相乘,。
解题步骤 2.1.3
组合 和 。
解题步骤 2.1.4
约去 和 的公因数。
解题步骤 2.1.4.1
从 中分解出因数 。
解题步骤 2.1.4.2
约去公因数。
解题步骤 2.1.4.2.1
从 中分解出因数 。
解题步骤 2.1.4.2.2
约去公因数。
解题步骤 2.1.4.2.3
重写表达式。
解题步骤 2.1.4.2.4
用 除以 。
解题步骤 2.2
将 重写为 。
解题步骤 2.2.1
使用 ,将 重写成 。
解题步骤 2.2.2
运用幂法则并将指数相乘,。
解题步骤 2.2.3
组合 和 。
解题步骤 2.2.4
约去 和 的公因数。
解题步骤 2.2.4.1
从 中分解出因数 。
解题步骤 2.2.4.2
约去公因数。
解题步骤 2.2.4.2.1
从 中分解出因数 。
解题步骤 2.2.4.2.2
约去公因数。
解题步骤 2.2.4.2.3
重写表达式。
解题步骤 2.2.4.2.4
用 除以 。
解题步骤 3
解题步骤 3.1
运用分配律。
解题步骤 3.2
将 和 重新排序。
解题步骤 3.3
将 和 重新排序。
解题步骤 3.4
使用幂法则 合并指数。
解题步骤 3.5
将 和 相加。
解题步骤 4
将单个积分拆分为多个积分。
解题步骤 5
由于 对于 是常数,所以将 移到积分外。
解题步骤 6
根据幂法则, 对 的积分是 。
解题步骤 7
由于 对于 是常数,所以将 移到积分外。
解题步骤 8
根据幂法则, 对 的积分是 。
解题步骤 9
解题步骤 9.1
化简。
解题步骤 9.2
将 重写为 。
解题步骤 9.3
化简。
解题步骤 9.3.1
组合 和 。
解题步骤 9.3.2
约去 和 的公因数。
解题步骤 9.3.2.1
从 中分解出因数 。
解题步骤 9.3.2.2
约去公因数。
解题步骤 9.3.2.2.1
从 中分解出因数 。
解题步骤 9.3.2.2.2
约去公因数。
解题步骤 9.3.2.2.3
重写表达式。
解题步骤 9.3.3
将负号移到分数的前面。
解题步骤 10
使用 替换所有出现的 。