输入问题...
微积分学 示例
解题步骤 1
解题步骤 1.1
使用链式法则求微分,根据该法则, 等于 ,其中 且 。
解题步骤 1.1.1
要使用链式法则,请将 设为 。
解题步骤 1.1.2
对 的导数为 。
解题步骤 1.1.3
使用 替换所有出现的 。
解题步骤 1.2
使用幂法则求微分。
解题步骤 1.2.1
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.2.2
化简表达式。
解题步骤 1.2.2.1
将 乘以 。
解题步骤 1.2.2.2
重新排序 的因式。
解题步骤 2
解题步骤 2.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 2.2
使用乘积法则求微分,根据该法则, 等于 ,其中 且 。
解题步骤 2.3
使用链式法则求微分,根据该法则, 等于 ,其中 且 。
解题步骤 2.3.1
要使用链式法则,请将 设为 。
解题步骤 2.3.2
对 的导数为 。
解题步骤 2.3.3
使用 替换所有出现的 。
解题步骤 2.4
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 2.5
对 进行 次方运算。
解题步骤 2.6
对 进行 次方运算。
解题步骤 2.7
使用幂法则 合并指数。
解题步骤 2.8
化简表达式。
解题步骤 2.8.1
将 和 相加。
解题步骤 2.8.2
将 移到 的左侧。
解题步骤 2.9
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 2.10
将 乘以 。
解题步骤 2.11
化简。
解题步骤 2.11.1
运用分配律。
解题步骤 2.11.2
将 乘以 。
解题步骤 3
对 的二阶导数是 。