输入问题...
微积分学 示例
解题步骤 1
将 书写为一个函数。
解题步骤 2
通过计算导数 的不定积分求函数 。
解题步骤 3
建立要求解的定积分。
解题步骤 4
利用公式 来分部求积分,其中 ,。
解题步骤 5
组合 和 。
解题步骤 6
由于 对于 是常数,所以将 移到积分外。
解题步骤 7
解题步骤 7.1
化简。
解题步骤 7.1.1
将 乘以 。
解题步骤 7.1.2
将 乘以 。
解题步骤 7.2
将 和 重新排序。
解题步骤 8
解题步骤 8.1
建立要用于相除的多项式。如果不是对于所有指数都有对应的项,则插入带 值的项。
- | + | + |
解题步骤 8.2
将被除数中的最高阶项 除以除数中的最高阶项 。
- | |||||||
- | + | + |
解题步骤 8.3
将新的商式项乘以除数。
- | |||||||
- | + | + | |||||
+ | - |
解题步骤 8.4
因为要从被除数中减去该表达式,所以应改变 中的所有符号
- | |||||||
- | + | + | |||||
- | + |
解题步骤 8.5
改变符号后,将相乘所得的多项式和最后的被除数相加,得到新的被除数。
- | |||||||
- | + | + | |||||
- | + | ||||||
+ |
解题步骤 8.6
最终答案为商加上余数除以除数。
解题步骤 9
将单个积分拆分为多个积分。
解题步骤 10
应用常数不变法则。
解题步骤 11
解题步骤 11.1
设 。求 。
解题步骤 11.1.1
重写。
解题步骤 11.1.2
用 除以 。
解题步骤 11.2
使用 和 重写该问题。
解题步骤 12
将负号移到分数的前面。
解题步骤 13
由于 对于 是常数,所以将 移到积分外。
解题步骤 14
对 的积分为 。
解题步骤 15
化简。
解题步骤 16
使用 替换所有出现的 。
解题步骤 17
答案是函数 的不定积分。