输入问题...
微积分学 示例
解题步骤 1
解题步骤 1.1
设 。求 。
解题步骤 1.1.1
对 求导。
解题步骤 1.1.2
求微分。
解题步骤 1.1.2.1
根据加法法则, 对 的导数是 。
解题步骤 1.1.2.2
因为 对于 是常数,所以 对 的导数为 。
解题步骤 1.1.3
对 的导数为 。
解题步骤 1.1.4
从 中减去 。
解题步骤 1.2
将下限代入替换 中的 。
解题步骤 1.3
化简。
解题步骤 1.3.1
的准确值为 。
解题步骤 1.3.2
将 和 相加。
解题步骤 1.4
将上限代入替换 中的 。
解题步骤 1.5
化简。
解题步骤 1.5.1
化简每一项。
解题步骤 1.5.1.1
在第一象限中找出三角函数值与之相等的角,并使用这一参考角。令表达式取负值,因为余弦在第二象限为负。
解题步骤 1.5.1.2
的准确值为 。
解题步骤 1.5.1.3
将 乘以 。
解题步骤 1.5.2
从 中减去 。
解题步骤 1.6
求得的 和 的值将用来计算定积分。
解题步骤 1.7
使用 、 以及积分的新极限重写该问题。
解题步骤 2
将分数分解成多个分数。
解题步骤 3
由于 对于 是常数,所以将 移到积分外。
解题步骤 4
对 的积分为 。
解题步骤 5
计算 在 处和在 处的值。
解题步骤 6
使用对数的商数性质,即 。
解题步骤 7
解题步骤 7.1
绝对值就是一个数和零之间的距离。 和 之间的距离为 。
解题步骤 7.2
绝对值就是一个数和零之间的距离。 和 之间的距离为 。
解题步骤 7.3
用 除以 。
解题步骤 7.4
零的自然对数无定义。
无定义
解题步骤 8
零的自然对数无定义。
无定义