输入问题...
微积分学 示例
解题步骤 1
在等式两边同时取微分
解题步骤 2
对 的导数为 。
解题步骤 3
解题步骤 3.1
根据加法法则, 对 的导数是 。
解题步骤 3.2
计算 。
解题步骤 3.2.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 3.2.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 3.2.3
将 乘以 。
解题步骤 3.3
计算 。
解题步骤 3.3.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 3.3.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 3.3.3
将 乘以 。
解题步骤 3.4
计算 。
解题步骤 3.4.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 3.4.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 3.4.3
将 乘以 。
解题步骤 3.5
计算 。
解题步骤 3.5.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 3.5.2
使用指数法则求微分,根据该法则, 等于 ,其中 =。
解题步骤 3.6
使用常数法则求导。
解题步骤 3.6.1
因为 对于 是常数,所以 对 的导数为 。
解题步骤 3.6.2
将 和 相加。
解题步骤 4
通过设置方程左边等于右边来进行方程变形。
解题步骤 5
使用 替换 。