输入问题...
微积分学 示例
解题步骤 1
解题步骤 1.1
建立要用于相除的多项式。如果不是对于所有指数都有对应的项,则插入带 值的项。
+ | + |
解题步骤 1.2
将被除数中的最高阶项 除以除数中的最高阶项 。
+ | + |
解题步骤 1.3
将新的商式项乘以除数。
+ | + | ||||||
+ | + |
解题步骤 1.4
因为要从被除数中减去该表达式,所以应改变 中的所有符号
+ | + | ||||||
- | - |
解题步骤 1.5
改变符号后,将相乘所得的多项式和最后的被除数相加,得到新的被除数。
+ | + | ||||||
- | - | ||||||
+ |
解题步骤 1.6
最终答案为商加上余数除以除数。
解题步骤 2
将单个积分拆分为多个积分。
解题步骤 3
解题步骤 3.1
从 中分解出因数 。
解题步骤 3.2
约去公因数。
解题步骤 3.2.1
从 中分解出因数 。
解题步骤 3.2.2
从 中分解出因数 。
解题步骤 3.2.3
从 中分解出因数 。
解题步骤 3.2.4
约去公因数。
解题步骤 3.2.5
重写表达式。
解题步骤 4
应用常数不变法则。
解题步骤 5
解题步骤 5.1
设 。求 。
解题步骤 5.1.1
对 求导。
解题步骤 5.1.2
根据加法法则, 对 的导数是 。
解题步骤 5.1.3
计算 。
解题步骤 5.1.3.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 5.1.3.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 5.1.3.3
将 乘以 。
解题步骤 5.1.4
使用常数法则求导。
解题步骤 5.1.4.1
因为 对于 是常数,所以 对 的导数为 。
解题步骤 5.1.4.2
将 和 相加。
解题步骤 5.2
使用 和 重写该问题。
解题步骤 6
解题步骤 6.1
将 乘以 。
解题步骤 6.2
将 移到 的左侧。
解题步骤 7
由于 对于 是常数,所以将 移到积分外。
解题步骤 8
对 的积分为 。
解题步骤 9
化简。
解题步骤 10
使用 替换所有出现的 。