输入问题...
微积分学 示例
解题步骤 1
因为项 对于 为常数,所以将其移动到极限外。
解题步骤 2
用分子和分母除以分母中 的最高次幂,即 。
解题步骤 3
解题步骤 3.1
约去 的公因数。
解题步骤 3.1.1
约去公因数。
解题步骤 3.1.2
用 除以 。
解题步骤 3.2
约去 的公因数。
解题步骤 3.2.1
约去公因数。
解题步骤 3.2.2
重写表达式。
解题步骤 3.3
当 趋于 时,利用极限的除法定则来分解极限。
解题步骤 3.4
当 趋于 时,利用极限的加法法则来分解极限。
解题步骤 3.5
计算 的极限值,当 趋近于 时此极限值为常数。
解题步骤 3.6
因为项 对于 为常数,所以将其移动到极限外。
解题步骤 4
由于它的分子接近实数,而分母是无穷大,所以分数 趋于 。
解题步骤 5
解题步骤 5.1
计算 的极限值,当 趋近于 时此极限值为常数。
解题步骤 5.2
化简答案。
解题步骤 5.2.1
用 除以 。
解题步骤 5.2.2
将 乘以 。
解题步骤 5.2.3
将 和 相加。
解题步骤 5.2.4
组合 和 。
解题步骤 6
结果可以多种形式表示。
恰当形式:
小数形式: