输入问题...
微积分学 示例
解题步骤 1
解题步骤 1.1
将 和 相加。
解题步骤 1.2
因为项 对于 为常数,所以将其移动到极限外。
解题步骤 2
解题步骤 2.1
计算分子和分母的极限值。
解题步骤 2.1.1
取分子和分母极限值。
解题步骤 2.1.2
计算分子的极限值。
解题步骤 2.1.2.1
使用极限幂法则把 的指数 移到极限外。
解题步骤 2.1.2.2
将 代入 来计算 的极限值。
解题步骤 2.1.2.3
对 进行任意正数次方的运算均得到 。
解题步骤 2.1.3
计算分母的极限值。
解题步骤 2.1.3.1
当 趋于 时,利用极限的加法法则来分解极限。
解题步骤 2.1.3.2
因为项 对于 为常数,所以将其移动到极限外。
解题步骤 2.1.3.3
使用极限幂法则把 的指数 移到极限外。
解题步骤 2.1.3.4
因为项 对于 为常数,所以将其移动到极限外。
解题步骤 2.1.3.5
使用极限幂法则把 的指数 移到极限外。
解题步骤 2.1.3.6
将 代入所有出现 的地方来计算极限值。
解题步骤 2.1.3.6.1
将 代入 来计算 的极限值。
解题步骤 2.1.3.6.2
将 代入 来计算 的极限值。
解题步骤 2.1.3.7
化简答案。
解题步骤 2.1.3.7.1
化简每一项。
解题步骤 2.1.3.7.1.1
对 进行任意正数次方的运算均得到 。
解题步骤 2.1.3.7.1.2
将 乘以 。
解题步骤 2.1.3.7.1.3
对 进行任意正数次方的运算均得到 。
解题步骤 2.1.3.7.1.4
将 乘以 。
解题步骤 2.1.3.7.2
将 和 相加。
解题步骤 2.1.3.7.3
该表达式包含分母 。该表达式无定义。
无定义
解题步骤 2.1.3.8
该表达式包含分母 。该表达式无定义。
无定义
解题步骤 2.1.4
该表达式包含分母 。该表达式无定义。
无定义
解题步骤 2.2
因为 是不定式,所以应该应用洛必达法则。洛必达法则表明,函数的商的极限等于它们导数的商的极限。
解题步骤 2.3
求分子和分母的导数。
解题步骤 2.3.1
对分子和分母进行求导。
解题步骤 2.3.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 2.3.3
根据加法法则, 对 的导数是 。
解题步骤 2.3.4
计算 。
解题步骤 2.3.4.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 2.3.4.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 2.3.4.3
将 乘以 。
解题步骤 2.3.5
计算 。
解题步骤 2.3.5.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 2.3.5.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 2.3.5.3
将 乘以 。
解题步骤 3
因为项 对于 为常数,所以将其移动到极限外。
解题步骤 4
解题步骤 4.1
计算分子和分母的极限值。
解题步骤 4.1.1
取分子和分母极限值。
解题步骤 4.1.2
计算分子的极限值。
解题步骤 4.1.2.1
使用极限幂法则把 的指数 移到极限外。
解题步骤 4.1.2.2
将 代入 来计算 的极限值。
解题步骤 4.1.2.3
对 进行任意正数次方的运算均得到 。
解题步骤 4.1.3
计算分母的极限值。
解题步骤 4.1.3.1
当 趋于 时,利用极限的加法法则来分解极限。
解题步骤 4.1.3.2
因为项 对于 为常数,所以将其移动到极限外。
解题步骤 4.1.3.3
使用极限幂法则把 的指数 移到极限外。
解题步骤 4.1.3.4
因为项 对于 为常数,所以将其移动到极限外。
解题步骤 4.1.3.5
将 代入所有出现 的地方来计算极限值。
解题步骤 4.1.3.5.1
将 代入 来计算 的极限值。
解题步骤 4.1.3.5.2
将 代入 来计算 的极限值。
解题步骤 4.1.3.6
化简答案。
解题步骤 4.1.3.6.1
化简每一项。
解题步骤 4.1.3.6.1.1
对 进行任意正数次方的运算均得到 。
解题步骤 4.1.3.6.1.2
将 乘以 。
解题步骤 4.1.3.6.1.3
将 乘以 。
解题步骤 4.1.3.6.2
将 和 相加。
解题步骤 4.1.3.6.3
该表达式包含分母 。该表达式无定义。
无定义
解题步骤 4.1.3.7
该表达式包含分母 。该表达式无定义。
无定义
解题步骤 4.1.4
该表达式包含分母 。该表达式无定义。
无定义
解题步骤 4.2
因为 是不定式,所以应该应用洛必达法则。洛必达法则表明,函数的商的极限等于它们导数的商的极限。
解题步骤 4.3
求分子和分母的导数。
解题步骤 4.3.1
对分子和分母进行求导。
解题步骤 4.3.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 4.3.3
根据加法法则, 对 的导数是 。
解题步骤 4.3.4
计算 。
解题步骤 4.3.4.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 4.3.4.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 4.3.4.3
将 乘以 。
解题步骤 4.3.5
计算 。
解题步骤 4.3.5.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 4.3.5.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 4.3.5.3
将 乘以 。
解题步骤 4.4
约去 和 的公因数。
解题步骤 4.4.1
从 中分解出因数 。
解题步骤 4.4.2
约去公因数。
解题步骤 4.4.2.1
从 中分解出因数 。
解题步骤 4.4.2.2
从 中分解出因数 。
解题步骤 4.4.2.3
从 中分解出因数 。
解题步骤 4.4.2.4
约去公因数。
解题步骤 4.4.2.5
重写表达式。
解题步骤 5
解题步骤 5.1
当 趋于 时,利用极限的除法定则来分解极限。
解题步骤 5.2
当 趋于 时,利用极限的加法法则来分解极限。
解题步骤 5.3
因为项 对于 为常数,所以将其移动到极限外。
解题步骤 5.4
使用极限幂法则把 的指数 移到极限外。
解题步骤 5.5
计算 的极限值,当 趋近于 时此极限值为常数。
解题步骤 6
解题步骤 6.1
将 代入 来计算 的极限值。
解题步骤 6.2
将 代入 来计算 的极限值。
解题步骤 7
解题步骤 7.1
将 乘以 。
解题步骤 7.2
约去 和 的公因数。
解题步骤 7.2.1
从 中分解出因数 。
解题步骤 7.2.2
从 中分解出因数 。
解题步骤 7.2.3
从 中分解出因数 。
解题步骤 7.2.4
将 重写为 。
解题步骤 7.2.5
从 中分解出因数 。
解题步骤 7.2.6
约去公因数。
解题步骤 7.2.6.1
从 中分解出因数 。
解题步骤 7.2.6.2
约去公因数。
解题步骤 7.2.6.3
重写表达式。
解题步骤 7.3
化简分母。
解题步骤 7.3.1
对 进行任意正数次方的运算均得到 。
解题步骤 7.3.2
将 乘以 。
解题步骤 7.3.3
将 和 相加。
解题步骤 7.4
将 乘以 。
解题步骤 7.5
用 除以 。
解题步骤 7.6
将 乘以 。