输入问题...
微积分学 示例
解题步骤 1
解题步骤 1.1
求二阶导数。
解题步骤 1.1.1
求一阶导数。
解题步骤 1.1.1.1
根据加法法则, 对 的导数是 。
解题步骤 1.1.1.2
计算 。
解题步骤 1.1.1.2.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 1.1.1.2.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.1.1.2.3
组合 和 。
解题步骤 1.1.1.2.4
组合 和 。
解题步骤 1.1.1.2.5
约去 的公因数。
解题步骤 1.1.1.2.5.1
约去公因数。
解题步骤 1.1.1.2.5.2
用 除以 。
解题步骤 1.1.1.3
计算 。
解题步骤 1.1.1.3.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 1.1.1.3.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.1.1.3.3
将 乘以 。
解题步骤 1.1.1.4
计算 。
解题步骤 1.1.1.4.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 1.1.1.4.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.1.1.4.3
将 乘以 。
解题步骤 1.1.2
求二阶导数。
解题步骤 1.1.2.1
求微分。
解题步骤 1.1.2.1.1
根据加法法则, 对 的导数是 。
解题步骤 1.1.2.1.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.1.2.2
计算 。
解题步骤 1.1.2.2.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 1.1.2.2.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.1.2.2.3
将 乘以 。
解题步骤 1.1.2.3
计算 。
解题步骤 1.1.2.3.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 1.1.2.3.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.1.2.3.3
将 乘以 。
解题步骤 1.1.3
对 的二阶导数是 。
解题步骤 1.2
使二阶导数等于 ,然后求解方程 。
解题步骤 1.2.1
将二阶导数设为等于 。
解题步骤 1.2.2
对方程左边进行因式分解。
解题步骤 1.2.2.1
从 中分解出因数 。
解题步骤 1.2.2.1.1
从 中分解出因数 。
解题步骤 1.2.2.1.2
从 中分解出因数 。
解题步骤 1.2.2.1.3
从 中分解出因数 。
解题步骤 1.2.2.1.4
从 中分解出因数 。
解题步骤 1.2.2.1.5
从 中分解出因数 。
解题步骤 1.2.2.2
使用完全平方法则进行因式分解。
解题步骤 1.2.2.2.1
将 重写为 。
解题步骤 1.2.2.2.2
请检查中间项是否为第一项被平方数和第三项被平方数的乘积的两倍。
解题步骤 1.2.2.2.3
重写多项式。
解题步骤 1.2.2.2.4
使用完全平方三项式法则对 进行因式分解,其中 和 。
解题步骤 1.2.3
将 中的每一项除以 并化简。
解题步骤 1.2.3.1
将 中的每一项都除以 。
解题步骤 1.2.3.2
化简左边。
解题步骤 1.2.3.2.1
约去 的公因数。
解题步骤 1.2.3.2.1.1
约去公因数。
解题步骤 1.2.3.2.1.2
用 除以 。
解题步骤 1.2.3.3
化简右边。
解题步骤 1.2.3.3.1
用 除以 。
解题步骤 1.2.4
将 设为等于 。
解题步骤 1.2.5
从等式两边同时减去 。
解题步骤 2
表达式的定义域是除使表达式无定义的值外的所有实数。在本例中,不存在使表达式无定义的实数。
区间计数法:
集合符号:
解题步骤 3
在二阶导数为零或无意义的 值附近建立区间。
解题步骤 4
解题步骤 4.1
使用表达式中的 替换变量 。
解题步骤 4.2
化简结果。
解题步骤 4.2.1
化简每一项。
解题步骤 4.2.1.1
对 进行 次方运算。
解题步骤 4.2.1.2
将 乘以 。
解题步骤 4.2.1.3
将 乘以 。
解题步骤 4.2.2
通过相加和相减进行化简。
解题步骤 4.2.2.1
从 中减去 。
解题步骤 4.2.2.2
将 和 相加。
解题步骤 4.2.3
最终答案为 。
解题步骤 4.3
图像在区间 上向上凹,因为 为正数。
由于 为正,在 上为向上凹
由于 为正,在 上为向上凹
解题步骤 5
解题步骤 5.1
使用表达式中的 替换变量 。
解题步骤 5.2
化简结果。
解题步骤 5.2.1
化简每一项。
解题步骤 5.2.1.1
对 进行任意正数次方的运算均得到 。
解题步骤 5.2.1.2
将 乘以 。
解题步骤 5.2.1.3
将 乘以 。
解题步骤 5.2.2
通过加上各数进行化简。
解题步骤 5.2.2.1
将 和 相加。
解题步骤 5.2.2.2
将 和 相加。
解题步骤 5.2.3
最终答案为 。
解题步骤 5.3
图像在区间 上向上凹,因为 为正数。
由于 为正,在 上为向上凹
由于 为正,在 上为向上凹
解题步骤 6
当函数的二阶导数为负数时,其图像向下凹,当其二阶导数为正数时,其图像向上凹。
由于 为正,在 上为向上凹
由于 为正,在 上为向上凹
解题步骤 7