输入问题...
微积分学 示例
解题步骤 1
解题步骤 1.1
求二阶导数。
解题步骤 1.1.1
求一阶导数。
解题步骤 1.1.1.1
根据加法法则, 对 的导数是 。
解题步骤 1.1.1.2
计算 。
解题步骤 1.1.1.2.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 1.1.1.2.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.1.1.2.3
将 乘以 。
解题步骤 1.1.1.3
计算 。
解题步骤 1.1.1.3.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 1.1.1.3.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.1.1.3.3
将 乘以 。
解题步骤 1.1.1.4
计算 。
解题步骤 1.1.1.4.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 1.1.1.4.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.1.1.4.3
将 乘以 。
解题步骤 1.1.2
求二阶导数。
解题步骤 1.1.2.1
根据加法法则, 对 的导数是 。
解题步骤 1.1.2.2
计算 。
解题步骤 1.1.2.2.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 1.1.2.2.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.1.2.2.3
将 乘以 。
解题步骤 1.1.2.3
计算 。
解题步骤 1.1.2.3.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 1.1.2.3.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.1.2.3.3
将 乘以 。
解题步骤 1.1.2.4
使用常数法则求导。
解题步骤 1.1.2.4.1
因为 对于 是常数,所以 对 的导数为 。
解题步骤 1.1.2.4.2
将 和 相加。
解题步骤 1.1.3
对 的二阶导数是 。
解题步骤 1.2
使二阶导数等于 ,然后求解方程 。
解题步骤 1.2.1
将二阶导数设为等于 。
解题步骤 1.2.2
从等式两边同时减去 。
解题步骤 1.2.3
将 中的每一项除以 并化简。
解题步骤 1.2.3.1
将 中的每一项都除以 。
解题步骤 1.2.3.2
化简左边。
解题步骤 1.2.3.2.1
约去 的公因数。
解题步骤 1.2.3.2.1.1
约去公因数。
解题步骤 1.2.3.2.1.2
用 除以 。
解题步骤 1.2.3.3
化简右边。
解题步骤 1.2.3.3.1
用 除以 。
解题步骤 2
表达式的定义域是除使表达式无定义的值外的所有实数。在本例中,不存在使表达式无定义的实数。
区间计数法:
集合符号:
解题步骤 3
在二阶导数为零或无意义的 值附近建立区间。
解题步骤 4
解题步骤 4.1
使用表达式中的 替换变量 。
解题步骤 4.2
化简结果。
解题步骤 4.2.1
将 乘以 。
解题步骤 4.2.2
将 和 相加。
解题步骤 4.2.3
最终答案为 。
解题步骤 4.3
图像在区间 上向上凹,因为 为正数。
由于 为正,在 上为向上凹
由于 为正,在 上为向上凹
解题步骤 5
解题步骤 5.1
使用表达式中的 替换变量 。
解题步骤 5.2
化简结果。
解题步骤 5.2.1
将 乘以 。
解题步骤 5.2.2
将 和 相加。
解题步骤 5.2.3
最终答案为 。
解题步骤 5.3
图像在区间 上向下凹,因为 为负数。
由于 为负,在 上为向下凹
由于 为负,在 上为向下凹
解题步骤 6
当函数的二阶导数为负数时,其图像向下凹,当其二阶导数为正数时,其图像向上凹。
由于 为正,在 上为向上凹
由于 为负,在 上为向下凹
解题步骤 7