输入问题...
微积分学 示例
解题步骤 1
解题步骤 1.1
设 。求 。
解题步骤 1.1.1
对 求导。
解题步骤 1.1.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.2
使用 和 重写该问题。
解题步骤 2
解题步骤 2.1
将 重写为 。
解题步骤 2.1.1
使用 ,将 重写成 。
解题步骤 2.1.2
运用幂法则并将指数相乘,。
解题步骤 2.1.3
组合 和 。
解题步骤 2.1.4
约去 和 的公因数。
解题步骤 2.1.4.1
从 中分解出因数 。
解题步骤 2.1.4.2
约去公因数。
解题步骤 2.1.4.2.1
从 中分解出因数 。
解题步骤 2.1.4.2.2
约去公因数。
解题步骤 2.1.4.2.3
重写表达式。
解题步骤 2.1.4.2.4
用 除以 。
解题步骤 2.2
将 重写为 。
解题步骤 2.2.1
使用 ,将 重写成 。
解题步骤 2.2.2
运用幂法则并将指数相乘,。
解题步骤 2.2.3
组合 和 。
解题步骤 2.2.4
约去 和 的公因数。
解题步骤 2.2.4.1
从 中分解出因数 。
解题步骤 2.2.4.2
约去公因数。
解题步骤 2.2.4.2.1
从 中分解出因数 。
解题步骤 2.2.4.2.2
约去公因数。
解题步骤 2.2.4.2.3
重写表达式。
解题步骤 2.2.4.2.4
用 除以 。
解题步骤 2.3
组合 和 。
解题步骤 2.4
组合 和 。
解题步骤 3
由于 对于 是常数,所以将 移到积分外。
解题步骤 4
解题步骤 4.1
设 。求 。
解题步骤 4.1.1
对 求导。
解题步骤 4.1.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 4.2
使用 和 重写该问题。
解题步骤 5
解题步骤 5.1
组合 和 。
解题步骤 5.2
组合 和 。
解题步骤 6
由于 对于 是常数,所以将 移到积分外。
解题步骤 7
解题步骤 7.1
将 乘以 。
解题步骤 7.2
将 乘以 。
解题步骤 8
利用公式 来分部求积分,其中 ,。
解题步骤 9
对 的积分为 。
解题步骤 10
将 重写为 。
解题步骤 11
解题步骤 11.1
使用 替换所有出现的 。
解题步骤 11.2
使用 替换所有出现的 。
解题步骤 12
解题步骤 12.1
化简每一项。
解题步骤 12.1.1
将 中的指数相乘。
解题步骤 12.1.1.1
运用幂法则并将指数相乘,。
解题步骤 12.1.1.2
将 乘以 。
解题步骤 12.1.2
将 中的指数相乘。
解题步骤 12.1.2.1
运用幂法则并将指数相乘,。
解题步骤 12.1.2.2
将 乘以 。
解题步骤 12.1.3
将 中的指数相乘。
解题步骤 12.1.3.1
运用幂法则并将指数相乘,。
解题步骤 12.1.3.2
将 乘以 。
解题步骤 12.2
运用分配律。
解题步骤 12.3
乘以 。
解题步骤 12.3.1
组合 和 。
解题步骤 12.3.2
组合 和 。
解题步骤 12.4
组合 和 。
解题步骤 13
重新排序项。