输入问题...
微积分学 示例
解题步骤 1
在等式两边同时取微分
解题步骤 2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 3
解题步骤 3.1
化简分子。
解题步骤 3.1.1
从 中分解出因数 。
解题步骤 3.1.1.1
从 中分解出因数 。
解题步骤 3.1.1.2
从 中分解出因数 。
解题步骤 3.1.1.3
从 中分解出因数 。
解题步骤 3.1.2
将 重写为 。
解题步骤 3.1.3
因为两项都是完全平方数,所以使用平方差公式 进行因式分解,其中 和 。
解题步骤 3.2
化简项。
解题步骤 3.2.1
约去 的公因数。
解题步骤 3.2.1.1
约去公因数。
解题步骤 3.2.1.2
用 除以 。
解题步骤 3.2.2
运用分配律。
解题步骤 3.2.3
将 乘以 。
解题步骤 3.3
根据加法法则, 对 的导数是 。
解题步骤 3.4
因为 对于 是常数,所以 对 的导数是 。
解题步骤 3.5
将 重写为 。
解题步骤 3.6
因为 对于 是常数,所以 对 的导数为 。
解题步骤 3.7
将 和 相加。
解题步骤 4
通过设置方程左边等于右边来进行方程变形。
解题步骤 5
解题步骤 5.1
将方程重写为 。
解题步骤 5.2
将 中的每一项除以 并化简。
解题步骤 5.2.1
将 中的每一项都除以 。
解题步骤 5.2.2
化简左边。
解题步骤 5.2.2.1
约去 的公因数。
解题步骤 5.2.2.1.1
约去公因数。
解题步骤 5.2.2.1.2
用 除以 。
解题步骤 6
使用 替换 。