输入问题...
微积分学 示例
,
解题步骤 1
重写该方程。
解题步骤 2
解题步骤 2.1
在两边建立积分。
解题步骤 2.2
应用常数不变法则。
解题步骤 2.3
对右边积分。
解题步骤 2.3.1
由于 对于 是常数,所以将 移到积分外。
解题步骤 2.3.2
使 。然后使 ,以便 。使用 和 进行重写。
解题步骤 2.3.2.1
设 。求 。
解题步骤 2.3.2.1.1
对 求导。
解题步骤 2.3.2.1.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 2.3.2.2
使用 和 重写该问题。
解题步骤 2.3.3
化简。
解题步骤 2.3.3.1
将 重写为 。
解题步骤 2.3.3.1.1
使用 ,将 重写成 。
解题步骤 2.3.3.1.2
运用幂法则并将指数相乘,。
解题步骤 2.3.3.1.3
组合 和 。
解题步骤 2.3.3.1.4
约去 和 的公因数。
解题步骤 2.3.3.1.4.1
从 中分解出因数 。
解题步骤 2.3.3.1.4.2
约去公因数。
解题步骤 2.3.3.1.4.2.1
从 中分解出因数 。
解题步骤 2.3.3.1.4.2.2
约去公因数。
解题步骤 2.3.3.1.4.2.3
重写表达式。
解题步骤 2.3.3.1.4.2.4
用 除以 。
解题步骤 2.3.3.2
将 重写为 。
解题步骤 2.3.3.2.1
使用 ,将 重写成 。
解题步骤 2.3.3.2.2
运用幂法则并将指数相乘,。
解题步骤 2.3.3.2.3
组合 和 。
解题步骤 2.3.3.2.4
约去 和 的公因数。
解题步骤 2.3.3.2.4.1
从 中分解出因数 。
解题步骤 2.3.3.2.4.2
约去公因数。
解题步骤 2.3.3.2.4.2.1
从 中分解出因数 。
解题步骤 2.3.3.2.4.2.2
约去公因数。
解题步骤 2.3.3.2.4.2.3
重写表达式。
解题步骤 2.3.3.2.4.2.4
用 除以 。
解题步骤 2.3.3.3
组合 和 。
解题步骤 2.3.3.4
组合 和 。
解题步骤 2.3.4
由于 对于 是常数,所以将 移到积分外。
解题步骤 2.3.5
化简。
解题步骤 2.3.5.1
组合 和 。
解题步骤 2.3.5.2
约去 和 的公因数。
解题步骤 2.3.5.2.1
从 中分解出因数 。
解题步骤 2.3.5.2.2
约去公因数。
解题步骤 2.3.5.2.2.1
从 中分解出因数 。
解题步骤 2.3.5.2.2.2
约去公因数。
解题步骤 2.3.5.2.2.3
重写表达式。
解题步骤 2.3.5.2.2.4
用 除以 。
解题步骤 2.3.6
使 。然后使 ,以便 。使用 和 进行重写。
解题步骤 2.3.6.1
设 。求 。
解题步骤 2.3.6.1.1
对 求导。
解题步骤 2.3.6.1.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 2.3.6.2
使用 和 重写该问题。
解题步骤 2.3.7
化简。
解题步骤 2.3.7.1
将 重写为 。
解题步骤 2.3.7.1.1
使用 ,将 重写成 。
解题步骤 2.3.7.1.2
运用幂法则并将指数相乘,。
解题步骤 2.3.7.1.3
组合 和 。
解题步骤 2.3.7.1.4
约去 和 的公因数。
解题步骤 2.3.7.1.4.1
从 中分解出因数 。
解题步骤 2.3.7.1.4.2
约去公因数。
解题步骤 2.3.7.1.4.2.1
从 中分解出因数 。
解题步骤 2.3.7.1.4.2.2
约去公因数。
解题步骤 2.3.7.1.4.2.3
重写表达式。
解题步骤 2.3.7.1.4.2.4
用 除以 。
解题步骤 2.3.7.2
组合 和 。
解题步骤 2.3.7.3
组合 和 。
解题步骤 2.3.8
由于 对于 是常数,所以将 移到积分外。
解题步骤 2.3.9
化简。
解题步骤 2.3.9.1
组合 和 。
解题步骤 2.3.9.2
约去 和 的公因数。
解题步骤 2.3.9.2.1
从 中分解出因数 。
解题步骤 2.3.9.2.2
约去公因数。
解题步骤 2.3.9.2.2.1
从 中分解出因数 。
解题步骤 2.3.9.2.2.2
约去公因数。
解题步骤 2.3.9.2.2.3
重写表达式。
解题步骤 2.3.9.2.2.4
用 除以 。
解题步骤 2.3.10
使 。然后使 ,以便 。使用 和 进行重写。
解题步骤 2.3.10.1
设 。求 。
解题步骤 2.3.10.1.1
对 求导。
解题步骤 2.3.10.1.2
因为 对于 是常数,所以 对 的导数是 。
解题步骤 2.3.10.1.3
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 2.3.10.1.4
将 乘以 。
解题步骤 2.3.10.2
使用 和 重写该问题。
解题步骤 2.3.11
化简。
解题步骤 2.3.11.1
将负号移到分数的前面。
解题步骤 2.3.11.2
组合 和 。
解题步骤 2.3.12
由于 对于 是常数,所以将 移到积分外。
解题步骤 2.3.13
将 乘以 。
解题步骤 2.3.14
由于 对于 是常数,所以将 移到积分外。
解题步骤 2.3.15
化简。
解题步骤 2.3.15.1
组合 和 。
解题步骤 2.3.15.2
约去 的公因数。
解题步骤 2.3.15.2.1
约去公因数。
解题步骤 2.3.15.2.2
重写表达式。
解题步骤 2.3.15.3
将 乘以 。
解题步骤 2.3.16
对 的积分为 。
解题步骤 2.3.17
代回替换每一个积分法替换变量。
解题步骤 2.3.17.1
使用 替换所有出现的 。
解题步骤 2.3.17.2
使用 替换所有出现的 。
解题步骤 2.3.17.3
使用 替换所有出现的 。
解题步骤 2.4
将右边的积分常数分组为 。
解题步骤 3
使用初始条件,通过将 代入 ,将 代入 ,在 中求 的值。
解题步骤 4
解题步骤 4.1
将方程重写为 。
解题步骤 4.2
化简每一项。
解题步骤 4.2.1
将 中的指数相乘。
解题步骤 4.2.1.1
运用幂法则并将指数相乘,。
解题步骤 4.2.1.2
将 乘以 。
解题步骤 4.2.2
将 中的指数相乘。
解题步骤 4.2.2.1
运用幂法则并将指数相乘,。
解题步骤 4.2.2.2
将 乘以 。
解题步骤 4.2.3
对 进行任意正数次方的运算均得到 。
解题步骤 4.2.4
将 乘以 。
解题步骤 4.2.5
任何数的 次方都是 。
解题步骤 4.3
将所有不包含 的项移到等式右边。
解题步骤 4.3.1
从等式两边同时减去 。
解题步骤 4.3.2
从 中减去 。
解题步骤 5
解题步骤 5.1
代入 替换 。
解题步骤 5.2
化简每一项。
解题步骤 5.2.1
将 中的指数相乘。
解题步骤 5.2.1.1
运用幂法则并将指数相乘,。
解题步骤 5.2.1.2
将 乘以 。
解题步骤 5.2.2
将 中的指数相乘。
解题步骤 5.2.2.1
运用幂法则并将指数相乘,。
解题步骤 5.2.2.2
将 乘以 。