输入问题...
微积分学 示例
,
解题步骤 1
解题步骤 1.1
两边同时乘以 。
解题步骤 1.2
化简。
解题步骤 1.2.1
使用乘法的交换性质重写。
解题步骤 1.2.2
约去 的公因数。
解题步骤 1.2.2.1
将 中前置负号移到分子中。
解题步骤 1.2.2.2
从 中分解出因数 。
解题步骤 1.2.2.3
约去公因数。
解题步骤 1.2.2.4
重写表达式。
解题步骤 1.3
重写该方程。
解题步骤 2
解题步骤 2.1
在两边建立积分。
解题步骤 2.2
对 的积分为 。
解题步骤 2.3
对右边积分。
解题步骤 2.3.1
由于 对于 是常数,所以将 移到积分外。
解题步骤 2.3.2
对 的积分为 。
解题步骤 2.3.3
化简。
解题步骤 2.4
将右边的积分常数分组为 。
解题步骤 3
解题步骤 3.1
将所有包含对数的项移到等式左边。
解题步骤 3.2
使用对数积的性质,即 。
解题步骤 3.3
要将绝对值相乘,请将每个绝对值内的项相乘。
解题步骤 3.4
要求解 ,请利用对数的性质重写方程。
解题步骤 3.5
使用对数的定义将 重写成指数形式。如果 和 是正实数且 ,则 等价于 。
解题步骤 3.6
求解 。
解题步骤 3.6.1
将方程重写为 。
解题步骤 3.6.2
去掉绝对值项。因为 ,所以这将使方程右边新增 。
解题步骤 3.6.3
将 中的每一项除以 并化简。
解题步骤 3.6.3.1
将 中的每一项都除以 。
解题步骤 3.6.3.2
化简左边。
解题步骤 3.6.3.2.1
约去 的公因数。
解题步骤 3.6.3.2.1.1
约去公因数。
解题步骤 3.6.3.2.1.2
用 除以 。
解题步骤 3.6.3.3
化简右边。
解题步骤 3.6.3.3.1
分离分数。
解题步骤 3.6.3.3.2
将 重写为正弦和余弦形式。
解题步骤 3.6.3.3.3
乘以分数的倒数从而实现除以 。
解题步骤 3.6.3.3.4
将 乘以 。
解题步骤 3.6.3.3.5
用 除以 。
解题步骤 3.6.3.3.6
将 中的因式重新排序。
解题步骤 4
化简积分常数。
解题步骤 5
使用初始条件,通过将 代入 ,将 代入 ,在 中求 的值。
解题步骤 6
解题步骤 6.1
将方程重写为 。
解题步骤 6.2
将 中的每一项除以 并化简。
解题步骤 6.2.1
将 中的每一项都除以 。
解题步骤 6.2.2
化简左边。
解题步骤 6.2.2.1
约去 的公因数。
解题步骤 6.2.2.1.1
约去公因数。
解题步骤 6.2.2.1.2
用 除以 。
解题步骤 6.2.3
化简右边。
解题步骤 6.2.3.1
分离分数。
解题步骤 6.2.3.2
将 转换成 。
解题步骤 6.2.3.3
用 除以 。
解题步骤 6.2.3.4
在第一象限中找出三角函数值与之相等的角,并使用这一参考角。令表达式取负值,因为正切在第二象限为负。
解题步骤 6.2.3.5
的准确值为 。
解题步骤 6.2.3.6
乘以 。
解题步骤 6.2.3.6.1
将 乘以 。
解题步骤 6.2.3.6.2
将 乘以 。
解题步骤 7
解题步骤 7.1
代入 替换 。
解题步骤 7.2
将 移到 的左侧。