输入问题...
微积分学 示例
解题步骤 1
解题步骤 1.1
因数。
解题步骤 1.1.1
从每组中因式分解出最大公因数。
解题步骤 1.1.1.1
将首两项和最后两项分成两组。
解题步骤 1.1.1.2
从每组中因式分解出最大公因数 (GCF)。
解题步骤 1.1.2
通过因式分解出最大公因数 来因式分解多项式。
解题步骤 1.2
两边同时乘以 。
解题步骤 1.3
约去 的公因数。
解题步骤 1.3.1
从 中分解出因数 。
解题步骤 1.3.2
约去公因数。
解题步骤 1.3.3
重写表达式。
解题步骤 1.4
重写该方程。
解题步骤 2
解题步骤 2.1
在两边建立积分。
解题步骤 2.2
对左边积分。
解题步骤 2.2.1
化简表达式。
解题步骤 2.2.1.1
将 和 重新排序。
解题步骤 2.2.1.2
将 重写为 。
解题步骤 2.2.2
对 的积分为 。
解题步骤 2.3
对右边积分。
解题步骤 2.3.1
将单个积分拆分为多个积分。
解题步骤 2.3.2
根据幂法则, 对 的积分是 。
解题步骤 2.3.3
应用常数不变法则。
解题步骤 2.3.4
化简。
解题步骤 2.4
将右边的积分常数分组为 。
解题步骤 3
解题步骤 3.1
取方程两边的反正切的逆函数来从反正切内提出 。
解题步骤 3.2
化简右边。
解题步骤 3.2.1
组合 和 。