输入问题...
微积分学 示例
,
解题步骤 1
解题步骤 1.1
两边同时乘以 。
解题步骤 1.2
化简。
解题步骤 1.2.1
合并。
解题步骤 1.2.2
约去 的公因数。
解题步骤 1.2.2.1
约去公因数。
解题步骤 1.2.2.2
重写表达式。
解题步骤 1.3
重写该方程。
解题步骤 2
解题步骤 2.1
在两边建立积分。
解题步骤 2.2
对左边积分。
解题步骤 2.2.1
应用指数的基本规则。
解题步骤 2.2.1.1
通过将 乘以 次幂来将其移出分母。
解题步骤 2.2.1.2
将 中的指数相乘。
解题步骤 2.2.1.2.1
运用幂法则并将指数相乘,。
解题步骤 2.2.1.2.2
将 乘以 。
解题步骤 2.2.2
根据幂法则, 对 的积分是 。
解题步骤 2.2.3
将 重写为 。
解题步骤 2.3
对 的积分为 。
解题步骤 2.4
将右边的积分常数分组为 。
解题步骤 3
解题步骤 3.1
求方程中各项的最小公分母 (LCD)。
解题步骤 3.1.1
求一列数值的最小公分母 (LCD) 等同于求这些数值的分母的最小公倍数 (LCM)。
解题步骤 3.1.2
1 和任何表达式的最小公倍数就是该表达式。
解题步骤 3.2
将 中的每一项乘以 以消去分数。
解题步骤 3.2.1
将 中的每一项乘以 。
解题步骤 3.2.2
化简左边。
解题步骤 3.2.2.1
约去 的公因数。
解题步骤 3.2.2.1.1
将 中前置负号移到分子中。
解题步骤 3.2.2.1.2
约去公因数。
解题步骤 3.2.2.1.3
重写表达式。
解题步骤 3.2.3
化简右边。
解题步骤 3.2.3.1
将 中的因式重新排序。
解题步骤 3.3
求解方程。
解题步骤 3.3.1
将方程重写为 。
解题步骤 3.3.2
从 中分解出因数 。
解题步骤 3.3.2.1
从 中分解出因数 。
解题步骤 3.3.2.2
从 中分解出因数 。
解题步骤 3.3.3
将 中的每一项除以 并化简。
解题步骤 3.3.3.1
将 中的每一项都除以 。
解题步骤 3.3.3.2
化简左边。
解题步骤 3.3.3.2.1
约去 的公因数。
解题步骤 3.3.3.2.1.1
约去公因数。
解题步骤 3.3.3.2.1.2
用 除以 。
解题步骤 3.3.3.3
化简右边。
解题步骤 3.3.3.3.1
将负号移到分数的前面。
解题步骤 4
使用初始条件,通过将 代入 ,将 代入 ,在 中求 的值。
解题步骤 5
解题步骤 5.1
将方程重写为 。
解题步骤 5.2
将每一项进行分解因式。
解题步骤 5.2.1
绝对值就是一个数和零之间的距离。 和 之间的距离为 。
解题步骤 5.2.2
的自然对数为 。
解题步骤 5.2.3
将 和 相加。
解题步骤 5.3
求方程中各项的最小公分母 (LCD)。
解题步骤 5.3.1
求一列数值的最小公分母 (LCD) 等同于求这些数值的分母的最小公倍数 (LCM)。
解题步骤 5.3.2
1 和任何表达式的最小公倍数就是该表达式。
解题步骤 5.4
将 中的每一项乘以 以消去分数。
解题步骤 5.4.1
将 中的每一项乘以 。
解题步骤 5.4.2
化简左边。
解题步骤 5.4.2.1
约去 的公因数。
解题步骤 5.4.2.1.1
将 中前置负号移到分子中。
解题步骤 5.4.2.1.2
约去公因数。
解题步骤 5.4.2.1.3
重写表达式。
解题步骤 5.5
求解方程。
解题步骤 5.5.1
将方程重写为 。
解题步骤 5.5.2
将 中的每一项除以 并化简。
解题步骤 5.5.2.1
将 中的每一项都除以 。
解题步骤 5.5.2.2
化简左边。
解题步骤 5.5.2.2.1
约去 的公因数。
解题步骤 5.5.2.2.1.1
约去公因数。
解题步骤 5.5.2.2.1.2
用 除以 。
解题步骤 5.5.2.3
化简右边。
解题步骤 5.5.2.3.1
将负号移到分数的前面。
解题步骤 6
解题步骤 6.1
代入 替换 。
解题步骤 6.2
化简分母。
解题步骤 6.2.1
要将 写成带有公分母的分数,请乘以 。
解题步骤 6.2.2
组合 和 。
解题步骤 6.2.3
在公分母上合并分子。
解题步骤 6.2.4
化简分子。
解题步骤 6.2.4.1
乘以 。
解题步骤 6.2.4.1.1
将 和 重新排序。
解题步骤 6.2.4.1.2
通过将 ( RATIONALNUMBER1) 移入对数中来化简 。
解题步骤 6.2.4.2
去掉 的绝对值符号,因为偶次幂的求幂结果恒为正。
解题步骤 6.3
将分子乘以分母的倒数。
解题步骤 6.4
将 乘以 。