输入问题...
微积分学 示例
解题步骤 1
解题步骤 1.1
因式分解出 。
解题步骤 1.2
重新组合因数。
解题步骤 1.3
两边同时乘以 。
解题步骤 1.4
约去 的公因数。
解题步骤 1.4.1
约去公因数。
解题步骤 1.4.2
重写表达式。
解题步骤 1.5
去掉多余的括号。
解题步骤 1.6
重写该方程。
解题步骤 2
解题步骤 2.1
在两边建立积分。
解题步骤 2.2
对左边积分。
解题步骤 2.2.1
组合 和 。
解题步骤 2.2.2
由于 对于 是常数,所以将 移到积分外。
解题步骤 2.2.3
对 的积分为 。
解题步骤 2.2.4
化简。
解题步骤 2.3
对右边积分。
解题步骤 2.3.1
将分数分解成多个分数。
解题步骤 2.3.2
将单个积分拆分为多个积分。
解题步骤 2.3.3
约去 的公因数。
解题步骤 2.3.3.1
约去公因数。
解题步骤 2.3.3.2
重写表达式。
解题步骤 2.3.4
应用常数不变法则。
解题步骤 2.3.5
对 的积分为 。
解题步骤 2.3.6
化简。
解题步骤 2.4
将右边的积分常数分组为 。
解题步骤 3
解题步骤 3.1
将所有包含对数的项移到等式左边。
解题步骤 3.2
化简左边。
解题步骤 3.2.1
化简 。
解题步骤 3.2.1.1
化简每一项。
解题步骤 3.2.1.1.1
通过将 ( RATIONALNUMBER1) 移入对数中来化简 。
解题步骤 3.2.1.1.2
去掉 的绝对值符号,因为偶次幂的求幂结果恒为正。
解题步骤 3.2.1.2
使用对数的商数性质,即 。
解题步骤 3.3
要求解 ,请利用对数的性质重写方程。
解题步骤 3.4
使用对数的定义将 重写成指数形式。如果 和 是正实数且 ,则 等价于 。
解题步骤 3.5
求解 。
解题步骤 3.5.1
将方程重写为 。
解题步骤 3.5.2
两边同时乘以 。
解题步骤 3.5.3
化简左边。
解题步骤 3.5.3.1
约去 的公因数。
解题步骤 3.5.3.1.1
约去公因数。
解题步骤 3.5.3.1.2
重写表达式。
解题步骤 3.5.4
求解 。
解题步骤 3.5.4.1
取方程两边的指定根来消去方程左边的指数。
解题步骤 3.5.4.2
完全解为同时包括解的正数和负数部分的结果。
解题步骤 3.5.4.2.1
首先,利用 的正值求第一个解。
解题步骤 3.5.4.2.2
下一步,使用 的负值来求第二个解。
解题步骤 3.5.4.2.3
完全解为同时包括解的正数和负数部分的结果。
解题步骤 4
解题步骤 4.1
将 重写为 。
解题步骤 4.2
将 和 重新排序。
解题步骤 4.3
将 重写为 。
解题步骤 4.4
将 和 重新排序。