输入问题...
代数 示例
1(a+1)21(a+1)2 , 1(a-1)21(a−1)2 , 2a2-12a2−1
解题步骤 1
解题步骤 1.1
将 11 重写为 1212。
1(a+1)2,1(a-1)2,2a2-121(a+1)2,1(a−1)2,2a2−12
解题步骤 1.2
因为两项都是完全平方数,所以使用平方差公式 a2-b2=(a+b)(a-b)a2−b2=(a+b)(a−b) 进行因式分解,其中 a=aa=a 和 b=1b=1。
1(a+1)2,1(a-1)2,2(a+1)(a-1)1(a+1)2,1(a−1)2,2(a+1)(a−1)
1(a+1)2,1(a-1)2,2(a+1)(a-1)1(a+1)2,1(a−1)2,2(a+1)(a−1)
解题步骤 2
求一列数值的最小公分母 (LCD) 等同于求这些数值的分母的最小公倍数 (LCM)。
(a+1)2,(a-1)2,(a+1)(a-1)(a+1)2,(a−1)2,(a+1)(a−1)
解题步骤 3
最小公倍数是能被所有数整除的最小正数。
1. 列出每个数的质因数。
2. 将每个因数乘以它在任一数字中出现的最大次数。
解题步骤 4
该数 11 不是一个质数,因为它只有一个正因数,即其本身。
非质数
解题步骤 5
1,1,11,1,1 的最小公倍数是将在任一数中出现次数最多的所有质因数相乘的结果。
11
解题步骤 6
a+1a+1 的因式是 (a+1)⋅(a+1)(a+1)⋅(a+1),同时也是 a+1a+1 乘以其本身 22 次。
(a+1)=(a+1)⋅(a+1)(a+1)=(a+1)⋅(a+1)
(a+1)(a+1) 出现了 22 次。
解题步骤 7
a-1a−1 的因式是 (a-1)⋅(a-1)(a−1)⋅(a−1),同时也是 a-1a−1 乘以其本身 22 次。
(a-1)=(a-1)⋅(a-1)(a−1)=(a−1)⋅(a−1)
(a-1)(a−1) 出现了 22 次。
解题步骤 8
a+1a+1 的因式是 a+1a+1 本身。
(a+1)=a+1(a+1)=a+1
(a+1)(a+1) 出现了 11 次。
解题步骤 9
a-1a−1 的因式是 a-1a−1 本身。
(a-1)=a-1(a−1)=a−1
(a-1)(a−1) 出现了 11 次。
解题步骤 10
(a+1)2,(a-1)2,a+1,a-1(a+1)2,(a−1)2,a+1,a−1 的最小公倍数为在任一项中出现次数最多的所有因数的乘积。
(a+1)2(a-1)2(a+1)2(a−1)2