输入问题...
代数 示例
解题步骤 1
将 设为等于 。
解题步骤 2
解题步骤 2.1
对方程左边进行因式分解。
解题步骤 2.1.1
从每组中因式分解出最大公因数。
解题步骤 2.1.1.1
将首两项和最后两项分成两组。
解题步骤 2.1.1.2
从每组中因式分解出最大公因数 (GCF)。
解题步骤 2.1.2
通过因式分解出最大公因数 来因式分解多项式。
解题步骤 2.1.3
将 重写为 。
解题步骤 2.1.4
因数。
解题步骤 2.1.4.1
因为两项都是完全平方数,所以使用平方差公式 进行因式分解,其中 和 。
解题步骤 2.1.4.2
去掉多余的括号。
解题步骤 2.1.5
合并指数。
解题步骤 2.1.5.1
从 中分解出因数 。
解题步骤 2.1.5.2
将 重写为 。
解题步骤 2.1.5.3
从 中分解出因数 。
解题步骤 2.1.5.4
将 重写为 。
解题步骤 2.1.5.5
对 进行 次方运算。
解题步骤 2.1.5.6
对 进行 次方运算。
解题步骤 2.1.5.7
使用幂法则 合并指数。
解题步骤 2.1.5.8
将 和 相加。
解题步骤 2.2
如果等式左侧的任一因数等于 ,则整个表达式将等于 。
解题步骤 2.3
将 设为等于 并求解 。
解题步骤 2.3.1
将 设为等于 。
解题步骤 2.3.2
求解 的 。
解题步骤 2.3.2.1
将 设为等于 。
解题步骤 2.3.2.2
在等式两边都加上 。
解题步骤 2.4
将 设为等于 并求解 。
解题步骤 2.4.1
将 设为等于 。
解题步骤 2.4.2
从等式两边同时减去 。
解题步骤 2.5
最终解为使 成立的所有值。
解题步骤 3