输入问题...
代数 示例
解题步骤 1
解题步骤 1.1
运用分配律。
解题步骤 1.2
将 乘以 。
解题步骤 2
从 中减去 。
解题步骤 3
解题步骤 3.1
在不等式两边同时加上 。
解题步骤 3.2
将 和 相加。
解题步骤 4
把不等式转换成方程。
解题步骤 5
在等式两边都加上 。
解题步骤 6
解题步骤 6.1
将 和 相加。
解题步骤 6.2
将 和 相加。
解题步骤 7
解题步骤 7.1
从 中分解出因数 。
解题步骤 7.2
从 中分解出因数 。
解题步骤 7.3
从 中分解出因数 。
解题步骤 8
如果等式左侧的任一因数等于 ,则整个表达式将等于 。
解题步骤 9
将 设为等于 。
解题步骤 10
解题步骤 10.1
将 设为等于 。
解题步骤 10.2
在等式两边都加上 。
解题步骤 11
最终解为使 成立的所有值。
解题步骤 12
使用每一个根建立验证区间。
解题步骤 13
解题步骤 13.1
检验区间 上的值是否使不等式成立。
解题步骤 13.1.1
选择区间 上的一个值并查看该数值是否能使原不等式成立。
解题步骤 13.1.2
使用原不等式中的 替换 。
解题步骤 13.1.3
左边的 大于右边的 ,即表示给定命题是假命题。
假
假
解题步骤 13.2
检验区间 上的值是否使不等式成立。
解题步骤 13.2.1
选择区间 上的一个值并查看该数值是否能使原不等式成立。
解题步骤 13.2.2
使用原不等式中的 替换 。
解题步骤 13.2.3
左边的 小于右边的 ,即给定的命题恒为真命题。
真
真
解题步骤 13.3
检验区间 上的值是否使不等式成立。
解题步骤 13.3.1
选择区间 上的一个值并查看该数值是否能使原不等式成立。
解题步骤 13.3.2
使用原不等式中的 替换 。
解题步骤 13.3.3
左边的 大于右边的 ,即表示给定命题是假命题。
假
假
解题步骤 13.4
比较各区间以判定哪些区间能满足原不等式。
为假
为真
为假
为假
为真
为假
解题步骤 14
解由使等式成立的所有区间组成。
解题步骤 15
结果可以多种形式表示。
不等式形式:
区间计数法:
解题步骤 16