输入问题...
代数 示例
解题步骤 1
从不等式两边同时减去 。
解题步骤 2
把不等式转换成方程。
解题步骤 3
解题步骤 3.1
从 中分解出因数 。
解题步骤 3.1.1
从 中分解出因数 。
解题步骤 3.1.2
从 中分解出因数 。
解题步骤 3.1.3
从 中分解出因数 。
解题步骤 3.2
将 重写为 。
解题步骤 3.3
因数。
解题步骤 3.3.1
因为两项都是完全平方数,所以使用平方差公式 进行因式分解,其中 和 。
解题步骤 3.3.2
去掉多余的括号。
解题步骤 4
如果等式左侧的任一因数等于 ,则整个表达式将等于 。
解题步骤 5
解题步骤 5.1
将 设为等于 。
解题步骤 5.2
求解 的 。
解题步骤 5.2.1
取方程两边的指定根来消去方程左边的指数。
解题步骤 5.2.2
化简 。
解题步骤 5.2.2.1
将 重写为 。
解题步骤 5.2.2.2
假设各项均为正实数,从根式下提出各项。
解题步骤 5.2.2.3
正负 是 。
解题步骤 6
解题步骤 6.1
将 设为等于 。
解题步骤 6.2
从等式两边同时减去 。
解题步骤 7
解题步骤 7.1
将 设为等于 。
解题步骤 7.2
在等式两边都加上 。
解题步骤 8
最终解为使 成立的所有值。
解题步骤 9
使用每一个根建立验证区间。
解题步骤 10
解题步骤 10.1
检验区间 上的值是否使不等式成立。
解题步骤 10.1.1
选择区间 上的一个值并查看该数值是否能使原不等式成立。
解题步骤 10.1.2
使用原不等式中的 替换 。
解题步骤 10.1.3
左边的 不小于右边的 ,即给定的命题是假命题。
假
假
解题步骤 10.2
检验区间 上的值是否使不等式成立。
解题步骤 10.2.1
选择区间 上的一个值并查看该数值是否能使原不等式成立。
解题步骤 10.2.2
使用原不等式中的 替换 。
解题步骤 10.2.3
左边的 小于右边的 ,即给定的命题恒为真命题。
真
真
解题步骤 10.3
检验区间 上的值是否使不等式成立。
解题步骤 10.3.1
选择区间 上的一个值并查看该数值是否能使原不等式成立。
解题步骤 10.3.2
使用原不等式中的 替换 。
解题步骤 10.3.3
左边的 小于右边的 ,即给定的命题恒为真命题。
真
真
解题步骤 10.4
检验区间 上的值是否使不等式成立。
解题步骤 10.4.1
选择区间 上的一个值并查看该数值是否能使原不等式成立。
解题步骤 10.4.2
使用原不等式中的 替换 。
解题步骤 10.4.3
左边的 不小于右边的 ,即给定的命题是假命题。
假
假
解题步骤 10.5
比较各区间以判定哪些区间能满足原不等式。
为假
为真
为真
为假
为假
为真
为真
为假
解题步骤 11
解由使等式成立的所有区间组成。
或
解题步骤 12
结果可以多种形式表示。
不等式形式:
区间计数法:
解题步骤 13