代数 示例

描述转换 f(x)=- x+1 的对数底数 2
解题步骤 1
父函数是给定函数类型的最简形式。
解题步骤 2
所描述的转换是从 的变化。
解题步骤 3
从第一个方程到第二个方程的转换可以通过求 求得。
解题步骤 4
解题步骤 5
解题步骤 6
水平位移取决于 的值。当 时,水平位移被描述为:
- 图像向左平移了 个单位。
- 图像向右平移了 个单位。
水平位移:向左 个单位
解题步骤 7
垂直位移取决于 的值。当 时,垂直位移可描述为:
- 图像向上平移了 个单位。
- The graph is shifted down units.
垂直位移:无
解题步骤 8
的符号描述了在 x 轴上的映射关系。 表示图像在 x 轴上存在映射关系。
关于 x 轴反射:反射
解题步骤 9
符号 描述关于 y 轴的反射。 表示图像关于 y 轴反射。
关于 y 轴反射:无
解题步骤 10
值表示图像的垂直拉伸或压缩。
是垂直拉伸(使其变得更窄)
是垂直压缩(使其变得更宽)
垂直压缩或垂直拉伸:无
解题步骤 11
要求变换,应比较两个函数并判断是否存在水平或垂直位移、是否关于 x 轴反射、是否关于 y轴反射以及是否存在垂直拉伸或压缩。
父函数:
水平位移:向左 个单位
垂直位移:无
关于 x 轴反射:反射
关于 y 轴反射:无
垂直压缩或垂直拉伸:无
解题步骤 12