输入问题...
代数 示例
cos(-x)+sin(-x)cot(-x)cos(−x)+sin(−x)cot(−x)
解题步骤 1
解题步骤 1.1
因为 cos(-x)cos(−x) 是一个偶函数,所以将 cos(-x)cos(−x) 重写成 cos(x)cos(x)。
cos(x)+sin(-x)cot(-x)cos(x)+sin(−x)cot(−x)
解题步骤 1.2
因为 sin(-x)sin(−x) 是一个奇函数,所以将sin(-x)sin(−x) 重写成 -sin(x)−sin(x)。
cos(x)+-sin(x)cot(-x)cos(x)+−sin(x)cot(−x)
解题步骤 1.3
化简分母。
解题步骤 1.3.1
因为 cot(-x)cot(−x) 是一个奇函数,所以将cot(-x)cot(−x) 重写成 -cot(x)−cot(x)。
cos(x)+-sin(x)-cot(x)cos(x)+−sin(x)−cot(x)
解题步骤 1.3.2
将 cot(x)cot(x) 重写为正弦和余弦形式。
cos(x)+-sin(x)-cos(x)sin(x)cos(x)+−sin(x)−cos(x)sin(x)
cos(x)+-sin(x)-cos(x)sin(x)cos(x)+−sin(x)−cos(x)sin(x)
解题步骤 1.4
将两个负数相除得到一个正数。
cos(x)+sin(x)cos(x)sin(x)cos(x)+sin(x)cos(x)sin(x)
解题步骤 1.5
将分子乘以分母的倒数。
cos(x)+sin(x)sin(x)cos(x)cos(x)+sin(x)sin(x)cos(x)
解题步骤 1.6
乘以 sin(x)sin(x)cos(x)sin(x)sin(x)cos(x)。
解题步骤 1.6.1
组合 sin(x)sin(x) 和 sin(x)cos(x)sin(x)cos(x)。
cos(x)+sin(x)sin(x)cos(x)cos(x)+sin(x)sin(x)cos(x)
解题步骤 1.6.2
对 sin(x)sin(x) 进行 11 次方运算。
cos(x)+sin1(x)sin(x)cos(x)cos(x)+sin1(x)sin(x)cos(x)
解题步骤 1.6.3
对 sin(x)sin(x) 进行 11 次方运算。
cos(x)+sin1(x)sin1(x)cos(x)cos(x)+sin1(x)sin1(x)cos(x)
解题步骤 1.6.4
使用幂法则 aman=am+naman=am+n 合并指数。
cos(x)+sin(x)1+1cos(x)cos(x)+sin(x)1+1cos(x)
解题步骤 1.6.5
将 11 和 11 相加。
cos(x)+sin2(x)cos(x)cos(x)+sin2(x)cos(x)
cos(x)+sin2(x)cos(x)cos(x)+sin2(x)cos(x)
cos(x)+sin2(x)cos(x)cos(x)+sin2(x)cos(x)
解题步骤 2
解题步骤 2.1
从 sin2(x)sin2(x) 中分解出因数 sin(x)sin(x)。
cos(x)+sin(x)sin(x)cos(x)cos(x)+sin(x)sin(x)cos(x)
解题步骤 2.2
分离分数。
cos(x)+sin(x)1⋅sin(x)cos(x)cos(x)+sin(x)1⋅sin(x)cos(x)
解题步骤 2.3
将 sin(x)cos(x)sin(x)cos(x) 转换成 tan(x)tan(x)。
cos(x)+sin(x)1tan(x)cos(x)+sin(x)1tan(x)
解题步骤 2.4
用 sin(x)sin(x) 除以 11。
cos(x)+sin(x)tan(x)cos(x)+sin(x)tan(x)
cos(x)+sin(x)tan(x)cos(x)+sin(x)tan(x)