输入问题...
代数 示例
解题步骤 1
解题步骤 1.1
将 乘以 。
解题步骤 1.2
取不等式两边的指定根来消去方程左边的指数。
解题步骤 1.3
化简左边。
解题步骤 1.3.1
从根式下提出各项。
解题步骤 1.4
将 书写为分段式。
解题步骤 1.4.1
要求第一段的区间, 需找到绝对值内为非负的地方。
解题步骤 1.4.2
在 为非负数的地方,去掉绝对值。
解题步骤 1.4.3
求 的定义域,并求与 的交点。
解题步骤 1.4.3.1
求 的定义域。
解题步骤 1.4.3.1.1
将 的被开方数设为大于或等于 ,以求使表达式有意义的区间。
解题步骤 1.4.3.1.2
求解 。
解题步骤 1.4.3.1.2.1
在不等式两边同时加上 。
解题步骤 1.4.3.1.2.2
将 中的每一项除以 并化简。
解题步骤 1.4.3.1.2.2.1
将 中的每一项除以 。当不等式两边同时乘以或除以一个负数时,应改变不等号的方向。
解题步骤 1.4.3.1.2.2.2
化简左边。
解题步骤 1.4.3.1.2.2.2.1
约去 的公因数。
解题步骤 1.4.3.1.2.2.2.1.1
约去公因数。
解题步骤 1.4.3.1.2.2.2.1.2
用 除以 。
解题步骤 1.4.3.1.2.2.3
化简右边。
解题步骤 1.4.3.1.2.2.3.1
将负号移到分数的前面。
解题步骤 1.4.3.1.3
定义域为使表达式有定义的所有值 。
解题步骤 1.4.3.2
求 和 的交点。
解题步骤 1.4.4
要求第二段的区间, 需找到绝对值内为负的地方。
解题步骤 1.4.5
在 为负的地方,去掉绝对值符号并乘以 。
解题步骤 1.4.6
求 的定义域,并求与 的交点。
解题步骤 1.4.6.1
求 的定义域。
解题步骤 1.4.6.1.1
将 的被开方数设为大于或等于 ,以求使表达式有意义的区间。
解题步骤 1.4.6.1.2
求解 。
解题步骤 1.4.6.1.2.1
在不等式两边同时加上 。
解题步骤 1.4.6.1.2.2
将 中的每一项除以 并化简。
解题步骤 1.4.6.1.2.2.1
将 中的每一项除以 。当不等式两边同时乘以或除以一个负数时,应改变不等号的方向。
解题步骤 1.4.6.1.2.2.2
化简左边。
解题步骤 1.4.6.1.2.2.2.1
约去 的公因数。
解题步骤 1.4.6.1.2.2.2.1.1
约去公因数。
解题步骤 1.4.6.1.2.2.2.1.2
用 除以 。
解题步骤 1.4.6.1.2.2.3
化简右边。
解题步骤 1.4.6.1.2.2.3.1
将负号移到分数的前面。
解题步骤 1.4.6.1.3
定义域为使表达式有定义的所有值 。
解题步骤 1.4.6.2
求 和 的交点。
解题步骤 1.4.7
书写为分段式。
解题步骤 1.5
当 时求解 。
解题步骤 1.5.1
将 中的每一项除以 并化简。
解题步骤 1.5.1.1
将 中的每一项除以 。当不等式两边同时乘以或除以一个负数时,应改变不等号的方向。
解题步骤 1.5.1.2
化简左边。
解题步骤 1.5.1.2.1
将两个负数相除得到一个正数。
解题步骤 1.5.1.2.2
用 除以 。
解题步骤 1.5.1.3
化简右边。
解题步骤 1.5.1.3.1
移动 中分母的负号。
解题步骤 1.5.1.3.2
将 重写为 。
解题步骤 1.5.2
求 和 的交点。
解题步骤 1.6
求解的并集。
解题步骤 2
该方程并非线性方程,因此不存在常数斜率。
非线性
解题步骤 3
画一条实线,再把界线下方的区域涂上阴影,因为 小于 。
解题步骤 4