输入问题...
代数 示例
解题步骤 1
从等式两边同时减去 。
解题步骤 2
将 重写为乘方形式。
解题步骤 3
代入 替换 。
解题步骤 4
移动 。
解题步骤 5
解题步骤 5.1
对方程左边进行因式分解。
解题步骤 5.1.1
从 中分解出因数 。
解题步骤 5.1.1.1
从 中分解出因数 。
解题步骤 5.1.1.2
从 中分解出因数 。
解题步骤 5.1.1.3
从 中分解出因数 。
解题步骤 5.1.1.4
从 中分解出因数 。
解题步骤 5.1.1.5
从 中分解出因数 。
解题步骤 5.1.2
因数。
解题步骤 5.1.2.1
分组因式分解。
解题步骤 5.1.2.1.1
对于 形式的多项式,将其中间项重写为两项之和,这两项的乘积为 并且它们的和为 。
解题步骤 5.1.2.1.1.1
从 中分解出因数 。
解题步骤 5.1.2.1.1.2
把 重写为 加
解题步骤 5.1.2.1.1.3
运用分配律。
解题步骤 5.1.2.1.2
从每组中因式分解出最大公因数。
解题步骤 5.1.2.1.2.1
将首两项和最后两项分成两组。
解题步骤 5.1.2.1.2.2
从每组中因式分解出最大公因数 (GCF)。
解题步骤 5.1.2.1.3
通过因式分解出最大公因数 来因式分解多项式。
解题步骤 5.1.2.2
去掉多余的括号。
解题步骤 5.2
如果等式左侧的任一因数等于 ,则整个表达式将等于 。
解题步骤 5.3
将 设为等于 并求解 。
解题步骤 5.3.1
将 设为等于 。
解题步骤 5.3.2
求解 的 。
解题步骤 5.3.2.1
从等式两边同时减去 。
解题步骤 5.3.2.2
将 中的每一项除以 并化简。
解题步骤 5.3.2.2.1
将 中的每一项都除以 。
解题步骤 5.3.2.2.2
化简左边。
解题步骤 5.3.2.2.2.1
约去 的公因数。
解题步骤 5.3.2.2.2.1.1
约去公因数。
解题步骤 5.3.2.2.2.1.2
用 除以 。
解题步骤 5.3.2.2.3
化简右边。
解题步骤 5.3.2.2.3.1
将负号移到分数的前面。
解题步骤 5.4
将 设为等于 并求解 。
解题步骤 5.4.1
将 设为等于 。
解题步骤 5.4.2
求解 的 。
解题步骤 5.4.2.1
在等式两边都加上 。
解题步骤 5.4.2.2
将 中的每一项除以 并化简。
解题步骤 5.4.2.2.1
将 中的每一项都除以 。
解题步骤 5.4.2.2.2
化简左边。
解题步骤 5.4.2.2.2.1
约去 的公因数。
解题步骤 5.4.2.2.2.1.1
约去公因数。
解题步骤 5.4.2.2.2.1.2
用 除以 。
解题步骤 5.5
最终解为使 成立的所有值。
解题步骤 6
代入 替换 中的 。
解题步骤 7
解题步骤 7.1
将方程重写为 。
解题步骤 7.2
取方程两边的自然对数从而去掉指数中的变量。
解题步骤 7.3
因为 无意义,所以方程无解。
无定义
解题步骤 7.4
无解
无解
无解
解题步骤 8
代入 替换 中的 。
解题步骤 9
解题步骤 9.1
将方程重写为 。
解题步骤 9.2
取方程两边的自然对数从而去掉指数中的变量。
解题步骤 9.3
展开左边。
解题步骤 9.3.1
通过将 移到对数外来展开 。
解题步骤 9.3.2
的自然对数为 。
解题步骤 9.3.3
将 乘以 。
解题步骤 10
结果可以多种形式表示。
恰当形式:
小数形式: