Nhập bài toán...
Lượng giác Ví dụ
Bước 1
Bước 1.1
Để tìm (các) hoành độ gốc, thay vào cho và giải tìm .
Bước 1.2
Giải phương trình.
Bước 1.2.1
Viết lại phương trình ở dạng .
Bước 1.2.2
Trừ khỏi cả hai vế của phương trình.
Bước 1.2.3
Chia mỗi số hạng trong cho và rút gọn.
Bước 1.2.3.1
Chia mỗi số hạng trong cho .
Bước 1.2.3.2
Rút gọn vế trái.
Bước 1.2.3.2.1
Triệt tiêu thừa số chung .
Bước 1.2.3.2.1.1
Triệt tiêu thừa số chung.
Bước 1.2.3.2.1.2
Chia cho .
Bước 1.2.3.3
Rút gọn vế phải.
Bước 1.2.3.3.1
Di chuyển dấu trừ ra phía trước của phân số.
Bước 1.2.4
Lấy cosin nghịch đảo của cả hai vế của phương trình để trích xuất từ trong cosin.
Bước 1.2.5
Rút gọn vế phải.
Bước 1.2.5.1
Tính .
Bước 1.2.6
Chia mỗi số hạng trong cho và rút gọn.
Bước 1.2.6.1
Chia mỗi số hạng trong cho .
Bước 1.2.6.2
Rút gọn vế trái.
Bước 1.2.6.2.1
Triệt tiêu thừa số chung .
Bước 1.2.6.2.1.1
Triệt tiêu thừa số chung.
Bước 1.2.6.2.1.2
Chia cho .
Bước 1.2.6.3
Rút gọn vế phải.
Bước 1.2.6.3.1
Chia cho .
Bước 1.2.7
Hàm cosin âm trong góc phần tư thứ hai và thứ ba. Để tìm đáp án thứ hai, hãy trừ góc tham chiếu từ để tìm đáp án trong góc phần tư thứ ba.
Bước 1.2.8
Giải tìm .
Bước 1.2.8.1
Rút gọn.
Bước 1.2.8.1.1
Nhân với .
Bước 1.2.8.1.2
Trừ khỏi .
Bước 1.2.8.2
Chia mỗi số hạng trong cho và rút gọn.
Bước 1.2.8.2.1
Chia mỗi số hạng trong cho .
Bước 1.2.8.2.2
Rút gọn vế trái.
Bước 1.2.8.2.2.1
Triệt tiêu thừa số chung .
Bước 1.2.8.2.2.1.1
Triệt tiêu thừa số chung.
Bước 1.2.8.2.2.1.2
Chia cho .
Bước 1.2.8.2.3
Rút gọn vế phải.
Bước 1.2.8.2.3.1
Chia cho .
Bước 1.2.9
Tìm chu kỳ của .
Bước 1.2.9.1
Chu kỳ của hàm số có thể được tính bằng .
Bước 1.2.9.2
Thay thế với trong công thức cho chu kỳ.
Bước 1.2.9.3
Giá trị tuyệt đối là khoảng cách giữa một số và số 0. Khoảng cách giữa và là .
Bước 1.2.9.4
Triệt tiêu thừa số chung .
Bước 1.2.9.4.1
Triệt tiêu thừa số chung.
Bước 1.2.9.4.2
Chia cho .
Bước 1.2.10
Chu kỳ của hàm là nên các giá trị sẽ lặp lại sau mỗi radian theo cả hai hướng.
, cho mọi số nguyên
, cho mọi số nguyên
Bước 1.3
(các) hoành độ gốc ở dạng điểm.
(các) hoành độ gốc: , cho bất kỳ số nguyên nào
(các) hoành độ gốc: , cho bất kỳ số nguyên nào
Bước 2
Bước 2.1
Để tìm (các) tung độ gốc, thay vào cho và giải tìm .
Bước 2.2
Giải phương trình.
Bước 2.2.1
Loại bỏ các dấu ngoặc đơn.
Bước 2.2.2
Rút gọn .
Bước 2.2.2.1
Rút gọn mỗi số hạng.
Bước 2.2.2.1.1
Nhân với .
Bước 2.2.2.1.2
Giá trị chính xác của là .
Bước 2.2.2.1.3
Nhân với .
Bước 2.2.2.2
Cộng và .
Bước 2.3
(các) tung độ gốc ở dạng điểm.
(các) tung độ gốc:
(các) tung độ gốc:
Bước 3
Liệt kê các phần giao.
(các) hoành độ gốc: , cho bất kỳ số nguyên nào
(các) tung độ gốc:
Bước 4