Lượng giác Ví dụ

Tìm Tung Độ Gốc và Hoành Độ Gốc f(x)=2cos(2x-pi)+4
Bước 1
Tìm các hoành độ gốc.
Nhấp để xem thêm các bước...
Bước 1.1
Để tìm (các) hoành độ gốc, thay vào cho và giải tìm .
Bước 1.2
Giải phương trình.
Nhấp để xem thêm các bước...
Bước 1.2.1
Viết lại phương trình ở dạng .
Bước 1.2.2
Trừ khỏi cả hai vế của phương trình.
Bước 1.2.3
Chia mỗi số hạng trong cho và rút gọn.
Nhấp để xem thêm các bước...
Bước 1.2.3.1
Chia mỗi số hạng trong cho .
Bước 1.2.3.2
Rút gọn vế trái.
Nhấp để xem thêm các bước...
Bước 1.2.3.2.1
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 1.2.3.2.1.1
Triệt tiêu thừa số chung.
Bước 1.2.3.2.1.2
Chia cho .
Bước 1.2.3.3
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 1.2.3.3.1
Chia cho .
Bước 1.2.4
Khoảng biến thiên của cosin là . Vì không nằm trong khoảng biến thiên này, nên không có đáp án.
Không có đáp án
Không có đáp án
Bước 1.3
Để tìm (các) hoành độ gốc, thay vào cho và giải tìm .
(các) hoành độ gốc:
(các) hoành độ gốc:
Bước 2
Tìm các tung độ gốc.
Nhấp để xem thêm các bước...
Bước 2.1
Để tìm (các) tung độ gốc, thay vào cho và giải tìm .
Bước 2.2
Giải phương trình.
Nhấp để xem thêm các bước...
Bước 2.2.1
Loại bỏ các dấu ngoặc đơn.
Bước 2.2.2
Rút gọn .
Nhấp để xem thêm các bước...
Bước 2.2.2.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 2.2.2.1.1
Nhân với .
Bước 2.2.2.1.2
Trừ khỏi .
Bước 2.2.2.1.3
Áp dụng góc tham chiếu bằng cách tìm góc có các giá trị lượng giác tương đương trong góc phần tư thứ nhất. Làm cho biểu thức âm vì cosin âm trong góc phần tư thứ hai.
Bước 2.2.2.1.4
Giá trị chính xác của .
Bước 2.2.2.1.5
Nhân .
Nhấp để xem thêm các bước...
Bước 2.2.2.1.5.1
Nhân với .
Bước 2.2.2.1.5.2
Nhân với .
Bước 2.2.2.2
Cộng .
Bước 2.3
(các) tung độ gốc ở dạng điểm.
(các) tung độ gốc:
(các) tung độ gốc:
Bước 3
Liệt kê các phần giao.
(các) hoành độ gốc:
(các) tung độ gốc:
Bước 4