Lượng giác Ví dụ

Tìm Giá Trị Cực Đại/Cực Tiểu y=sin(x)-6
Bước 1
Tìm đạo hàm bậc một của hàm số.
Nhấp để xem thêm các bước...
Bước 1.1
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 1.2
Đạo hàm của đối với .
Bước 1.3
Tìm đạo hàm bằng quy tắc hằng số.
Nhấp để xem thêm các bước...
Bước 1.3.1
là hằng số đối với , đạo hàm của đối với .
Bước 1.3.2
Cộng .
Bước 2
Đạo hàm của đối với .
Bước 3
Để tìm các giá trị cực đại địa phương và cực tiểu địa phương của hàm số, đặt đạo hàm bằng và giải.
Bước 4
Lấy cosin nghịch đảo của cả hai vế của phương trình để trích xuất từ trong cosin.
Bước 5
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 5.1
Giá trị chính xác của .
Bước 6
Hàm cosin dương ở góc phần tư thứ nhất và thứ tư. Để tìm đáp án thứ hai, hãy trừ góc tham chiếu khỏi để tìm đáp án trong góc phần tư thứ tư.
Bước 7
Rút gọn .
Nhấp để xem thêm các bước...
Bước 7.1
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 7.2
Kết hợp các phân số.
Nhấp để xem thêm các bước...
Bước 7.2.1
Kết hợp .
Bước 7.2.2
Kết hợp các tử số trên mẫu số chung.
Bước 7.3
Rút gọn tử số.
Nhấp để xem thêm các bước...
Bước 7.3.1
Nhân với .
Bước 7.3.2
Trừ khỏi .
Bước 8
Đáp án của phương trình .
Bước 9
Tính đạo hàm bậc hai tại . Nếu đạo hàm bậc hai dương, thì đây là một cực tiểu địa phương. Nếu nó âm, thì đây là một cực đại địa phương.
Bước 10
Tính đạo hàm bậc hai.
Nhấp để xem thêm các bước...
Bước 10.1
Giá trị chính xác của .
Bước 10.2
Nhân với .
Bước 11
là một cực đại địa phương vì giá trị của đạo hàm bậc hai âm. Đây được gọi là phép kiểm định đạo hàm bậc hai.
là cực đại địa phương
Bước 12
Tìm giá trị y khi .
Nhấp để xem thêm các bước...
Bước 12.1
Thay thế biến bằng trong biểu thức.
Bước 12.2
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 12.2.1
Giá trị chính xác của .
Bước 12.2.2
Trừ khỏi .
Bước 12.2.3
Câu trả lời cuối cùng là .
Bước 13
Tính đạo hàm bậc hai tại . Nếu đạo hàm bậc hai dương, thì đây là một cực tiểu địa phương. Nếu nó âm, thì đây là một cực đại địa phương.
Bước 14
Tính đạo hàm bậc hai.
Nhấp để xem thêm các bước...
Bước 14.1
Áp dụng góc tham chiếu bằng cách tìm góc có các giá trị lượng giác tương đương trong góc phần tư thứ nhất. Làm cho biểu thức âm vì sin âm trong góc phần tư thứ tư.
Bước 14.2
Giá trị chính xác của .
Bước 14.3
Nhân .
Nhấp để xem thêm các bước...
Bước 14.3.1
Nhân với .
Bước 14.3.2
Nhân với .
Bước 15
là một cực tiểu địa phương vì giá trị của đạo hàm bậc hai dương. Đây được gọi là phép kiểm định đạo hàm bậc hai.
là cực tiểu địa phương
Bước 16
Tìm giá trị y khi .
Nhấp để xem thêm các bước...
Bước 16.1
Thay thế biến bằng trong biểu thức.
Bước 16.2
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 16.2.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 16.2.1.1
Áp dụng góc tham chiếu bằng cách tìm góc có các giá trị lượng giác tương đương trong góc phần tư thứ nhất. Làm cho biểu thức âm vì sin âm trong góc phần tư thứ tư.
Bước 16.2.1.2
Giá trị chính xác của .
Bước 16.2.1.3
Nhân với .
Bước 16.2.2
Trừ khỏi .
Bước 16.2.3
Câu trả lời cuối cùng là .
Bước 17
Đây là những cực trị địa phương cho .
là một cực đại địa phuơng
là một cực tiểu địa phương
Bước 18