Lượng giác Ví dụ

Giải Tam Giác a=25 , b=30 , C=168 , c=54.2
, , ,
Bước 1
Quy luật của sin dựa trên tỉ lệ của các cạnh và góc trong hình tam giác. Quy luật nói rằng đối với các góc của một tam giác không phải tam giác vuông, mỗi góc của tam giác có cùng tỉ lệ của số đo góc với giá trị sin.
Bước 2
Thay các giá trị đã biết vào định luật của sin để tìm .
Bước 3
Giải phương trình để tìm .
Nhấp để xem thêm các bước...
Bước 3.1
Nhân cả hai vế của phương trình với .
Bước 3.2
Rút gọn cả hai vế của phương trình.
Nhấp để xem thêm các bước...
Bước 3.2.1
Rút gọn vế trái.
Nhấp để xem thêm các bước...
Bước 3.2.1.1
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 3.2.1.1.1
Triệt tiêu thừa số chung.
Bước 3.2.1.1.2
Viết lại biểu thức.
Bước 3.2.2
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 3.2.2.1
Rút gọn .
Nhấp để xem thêm các bước...
Bước 3.2.2.1.1
Tính .
Bước 3.2.2.1.2
Chia cho .
Bước 3.2.2.1.3
Nhân với .
Bước 3.3
Lấy nghịch đảo sin của cả hai vế của phương trình để trích xuất từ trong hàm sin.
Bước 3.4
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 3.4.1
Tính .
Bước 3.5
Hàm sin dương trong góc phần tư thứ nhất và thứ hai. Để tìm đáp án thứ hai, trừ góc tham chiếu khỏi để tìm đáp án trong góc phần tư thứ hai.
Bước 3.6
Trừ khỏi .
Bước 3.7
Đáp án của phương trình .
Bước 3.8
Loại trừ tam giác không hợp lệ.
Bước 4
Tổng của tất cả các góc trong một tam giác là độ.
Bước 5
Giải phương trình để tìm .
Nhấp để xem thêm các bước...
Bước 5.1
Cộng .
Bước 5.2
Di chuyển tất cả các số hạng không chứa sang vế phải của phương trình.
Nhấp để xem thêm các bước...
Bước 5.2.1
Trừ khỏi cả hai vế của phương trình.
Bước 5.2.2
Trừ khỏi .
Bước 6
Đây là kết quả cho tất cả các góc và cạnh của tam giác đã cho.