Lượng giác Ví dụ

Giải x (tan(x- căn bậc hai của 3))(2sin(x-1))=0
Bước 1
Nếu bất kỳ thừa số riêng lẻ nào ở vế trái của phương trình bằng , toàn bộ biểu thức sẽ bằng .
Bước 2
Đặt bằng và giải tìm .
Nhấp để xem thêm các bước...
Bước 2.1
Đặt bằng với .
Bước 2.2
Giải để tìm .
Nhấp để xem thêm các bước...
Bước 2.2.1
Lấy nghịch đảo tang của cả hai vế của phương trình để trích xuất từ trong hàm tang.
Bước 2.2.2
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 2.2.2.1
Giá trị chính xác của .
Bước 2.2.3
Cộng cho cả hai vế của phương trình.
Bước 2.2.4
Hàm tang dương trong góc phần tư thứ nhất và thứ ba. Để tìm đáp án thứ hai, hãy cộng góc tham chiếu từ để tìm đáp án trong góc phần tư thứ tư.
Bước 2.2.5
Giải tìm .
Nhấp để xem thêm các bước...
Bước 2.2.5.1
Cộng .
Bước 2.2.5.2
Cộng cho cả hai vế của phương trình.
Bước 2.2.6
Tìm chu kỳ của .
Nhấp để xem thêm các bước...
Bước 2.2.6.1
Chu kỳ của hàm số có thể được tính bằng .
Bước 2.2.6.2
Thay thế với trong công thức cho chu kỳ.
Bước 2.2.6.3
Giá trị tuyệt đối là khoảng cách giữa một số và số 0. Khoảng cách giữa .
Bước 2.2.6.4
Chia cho .
Bước 2.2.7
Chu kỳ của hàm nên các giá trị sẽ lặp lại sau mỗi radian theo cả hai hướng.
, cho mọi số nguyên
, cho mọi số nguyên
, cho mọi số nguyên
Bước 3
Đặt bằng và giải tìm .
Nhấp để xem thêm các bước...
Bước 3.1
Đặt bằng với .
Bước 3.2
Giải để tìm .
Nhấp để xem thêm các bước...
Bước 3.2.1
Lấy nghịch đảo sin của cả hai vế của phương trình để trích xuất từ trong hàm sin.
Bước 3.2.2
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 3.2.2.1
Giá trị chính xác của .
Bước 3.2.3
Cộng cho cả hai vế của phương trình.
Bước 3.2.4
Hàm sin dương trong góc phần tư thứ nhất và thứ hai. Để tìm đáp án thứ hai, trừ góc tham chiếu khỏi để tìm đáp án trong góc phần tư thứ hai.
Bước 3.2.5
Giải tìm .
Nhấp để xem thêm các bước...
Bước 3.2.5.1
Trừ khỏi .
Bước 3.2.5.2
Cộng cho cả hai vế của phương trình.
Bước 3.2.6
Tìm chu kỳ của .
Nhấp để xem thêm các bước...
Bước 3.2.6.1
Chu kỳ của hàm số có thể được tính bằng .
Bước 3.2.6.2
Thay thế với trong công thức cho chu kỳ.
Bước 3.2.6.3
Giá trị tuyệt đối là khoảng cách giữa một số và số 0. Khoảng cách giữa .
Bước 3.2.6.4
Chia cho .
Bước 3.2.7
Chu kỳ của hàm nên các giá trị sẽ lặp lại sau mỗi radian theo cả hai hướng.
, cho mọi số nguyên
, cho mọi số nguyên
, cho mọi số nguyên
Bước 4
Đáp án cuối cùng là tất cả các giá trị làm cho đúng.
, cho mọi số nguyên
Bước 5
Hợp nhất các câu trả lời.
Nhấp để xem thêm các bước...
Bước 5.1
Hợp nhất để .
, cho mọi số nguyên
Bước 5.2
Hợp nhất để .
, cho mọi số nguyên
Bước 5.3
Hợp nhất các câu trả lời.
, cho mọi số nguyên
, cho mọi số nguyên
Bước 6
Chứng minh từng đáp án bằng cách thay chúng vào và giải.
, cho mọi số nguyên