Nhập bài toán...
Lượng giác Ví dụ
Bước 1
Thay bằng .
Bước 2
Bước 2.1
Viết lại ở dạng .
Bước 2.2
Viết lại ở dạng .
Bước 2.3
Kiểm tra xem số hạng ở giữa có gấp đôi tích của các số trước khi được bình phương ở số hạng thứ nhất và số hạng thứ ba không.
Bước 2.4
Viết lại đa thức này.
Bước 2.5
Phân tích thành thừa số bằng quy tắc tam thức chính phương , trong đó và .
Bước 3
Đặt bằng .
Bước 4
Bước 4.1
Cộng cho cả hai vế của phương trình.
Bước 4.2
Chia mỗi số hạng trong cho và rút gọn.
Bước 4.2.1
Chia mỗi số hạng trong cho .
Bước 4.2.2
Rút gọn vế trái.
Bước 4.2.2.1
Triệt tiêu thừa số chung .
Bước 4.2.2.1.1
Triệt tiêu thừa số chung.
Bước 4.2.2.1.2
Chia cho .
Bước 5
Thay bằng .
Bước 6
Lấy cosin nghịch đảo của cả hai vế của phương trình để trích xuất từ trong cosin.
Bước 7
Bước 7.1
Giá trị chính xác của là .
Bước 8
Hàm cosin dương ở góc phần tư thứ nhất và thứ tư. Để tìm đáp án thứ hai, hãy trừ góc tham chiếu khỏi để tìm đáp án trong góc phần tư thứ tư.
Bước 9
Bước 9.1
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 9.2
Kết hợp các phân số.
Bước 9.2.1
Kết hợp và .
Bước 9.2.2
Kết hợp các tử số trên mẫu số chung.
Bước 9.3
Rút gọn tử số.
Bước 9.3.1
Nhân với .
Bước 9.3.2
Trừ khỏi .
Bước 10
Bước 10.1
Chu kỳ của hàm số có thể được tính bằng .
Bước 10.2
Thay thế với trong công thức cho chu kỳ.
Bước 10.3
Giá trị tuyệt đối là khoảng cách giữa một số và số 0. Khoảng cách giữa và là .
Bước 10.4
Chia cho .
Bước 11
Chu kỳ của hàm là nên các giá trị sẽ lặp lại sau mỗi radian theo cả hai hướng.
, cho mọi số nguyên