Lượng giác Ví dụ

Giải Bằng Cách Sử Dụng Thuộc Tính Của Căn Bậc Hai x^2-10x=-29
Bước 1
Cộng cho cả hai vế của phương trình.
Bước 2
Sử dụng công thức bậc hai để tìm các đáp án.
Bước 3
Thay các giá trị , , và vào công thức bậc hai và giải tìm .
Bước 4
Rút gọn.
Nhấp để xem thêm các bước...
Bước 4.1
Rút gọn tử số.
Nhấp để xem thêm các bước...
Bước 4.1.1
Nâng lên lũy thừa .
Bước 4.1.2
Nhân .
Nhấp để xem thêm các bước...
Bước 4.1.2.1
Nhân với .
Bước 4.1.2.2
Nhân với .
Bước 4.1.3
Trừ khỏi .
Bước 4.1.4
Viết lại ở dạng .
Bước 4.1.5
Viết lại ở dạng .
Bước 4.1.6
Viết lại ở dạng .
Bước 4.1.7
Viết lại ở dạng .
Bước 4.1.8
Đưa các số hạng dưới dấu căn ra ngoài, giả sử đó là các số thực dương.
Bước 4.1.9
Di chuyển sang phía bên trái của .
Bước 4.2
Nhân với .
Bước 4.3
Rút gọn .
Bước 5
Rút gọn biểu thức để giải tìm phần của .
Nhấp để xem thêm các bước...
Bước 5.1
Rút gọn tử số.
Nhấp để xem thêm các bước...
Bước 5.1.1
Nâng lên lũy thừa .
Bước 5.1.2
Nhân .
Nhấp để xem thêm các bước...
Bước 5.1.2.1
Nhân với .
Bước 5.1.2.2
Nhân với .
Bước 5.1.3
Trừ khỏi .
Bước 5.1.4
Viết lại ở dạng .
Bước 5.1.5
Viết lại ở dạng .
Bước 5.1.6
Viết lại ở dạng .
Bước 5.1.7
Viết lại ở dạng .
Bước 5.1.8
Đưa các số hạng dưới dấu căn ra ngoài, giả sử đó là các số thực dương.
Bước 5.1.9
Di chuyển sang phía bên trái của .
Bước 5.2
Nhân với .
Bước 5.3
Rút gọn .
Bước 5.4
Chuyển đổi thành .
Bước 6
Rút gọn biểu thức để giải tìm phần của .
Nhấp để xem thêm các bước...
Bước 6.1
Rút gọn tử số.
Nhấp để xem thêm các bước...
Bước 6.1.1
Nâng lên lũy thừa .
Bước 6.1.2
Nhân .
Nhấp để xem thêm các bước...
Bước 6.1.2.1
Nhân với .
Bước 6.1.2.2
Nhân với .
Bước 6.1.3
Trừ khỏi .
Bước 6.1.4
Viết lại ở dạng .
Bước 6.1.5
Viết lại ở dạng .
Bước 6.1.6
Viết lại ở dạng .
Bước 6.1.7
Viết lại ở dạng .
Bước 6.1.8
Đưa các số hạng dưới dấu căn ra ngoài, giả sử đó là các số thực dương.
Bước 6.1.9
Di chuyển sang phía bên trái của .
Bước 6.2
Nhân với .
Bước 6.3
Rút gọn .
Bước 6.4
Chuyển đổi thành .
Bước 7
Câu trả lời cuối cùng là sự kết hợp của cả hai đáp án.