Nhập bài toán...
Lượng giác Ví dụ
Bước 1
Thay bằng .
Bước 2
Sử dụng công thức bậc hai để tìm các đáp án.
Bước 3
Thay các giá trị , , và vào công thức bậc hai và giải tìm .
Bước 4
Bước 4.1
Rút gọn tử số.
Bước 4.1.1
Nâng lên lũy thừa .
Bước 4.1.2
Nhân .
Bước 4.1.2.1
Nhân với .
Bước 4.1.2.2
Nhân với .
Bước 4.1.3
Trừ khỏi .
Bước 4.2
Nhân với .
Bước 5
Câu trả lời cuối cùng là sự kết hợp của cả hai đáp án.
Bước 6
Thay bằng .
Bước 7
Lập từng đáp án để giải tìm .
Bước 8
Bước 8.1
Khoảng biến thiên của sin là . Vì không nằm trong khoảng biến thiên này, nên không có đáp án.
Không có đáp án
Không có đáp án
Bước 9
Bước 9.1
Lấy nghịch đảo sin của cả hai vế của phương trình để trích xuất từ trong hàm sin.
Bước 9.2
Rút gọn vế phải.
Bước 9.2.1
Tính .
Bước 9.3
Chia mỗi số hạng trong cho và rút gọn.
Bước 9.3.1
Chia mỗi số hạng trong cho .
Bước 9.3.2
Rút gọn vế trái.
Bước 9.3.2.1
Triệt tiêu thừa số chung .
Bước 9.3.2.1.1
Triệt tiêu thừa số chung.
Bước 9.3.2.1.2
Chia cho .
Bước 9.3.3
Rút gọn vế phải.
Bước 9.3.3.1
Chia cho .
Bước 9.4
Hàm sin dương trong góc phần tư thứ nhất và thứ hai. Để tìm đáp án thứ hai, trừ góc tham chiếu khỏi để tìm đáp án trong góc phần tư thứ hai.
Bước 9.5
Giải tìm .
Bước 9.5.1
Trừ khỏi .
Bước 9.5.2
Chia mỗi số hạng trong cho và rút gọn.
Bước 9.5.2.1
Chia mỗi số hạng trong cho .
Bước 9.5.2.2
Rút gọn vế trái.
Bước 9.5.2.2.1
Triệt tiêu thừa số chung .
Bước 9.5.2.2.1.1
Triệt tiêu thừa số chung.
Bước 9.5.2.2.1.2
Chia cho .
Bước 9.5.2.3
Rút gọn vế phải.
Bước 9.5.2.3.1
Chia cho .
Bước 9.6
Tìm chu kỳ của .
Bước 9.6.1
Chu kỳ của hàm số có thể được tính bằng .
Bước 9.6.2
Thay thế với trong công thức cho chu kỳ.
Bước 9.6.3
Giá trị tuyệt đối là khoảng cách giữa một số và số 0. Khoảng cách giữa và là .
Bước 9.6.4
Triệt tiêu thừa số chung .
Bước 9.6.4.1
Triệt tiêu thừa số chung.
Bước 9.6.4.2
Chia cho .
Bước 9.7
Chu kỳ của hàm là nên các giá trị sẽ lặp lại sau mỗi radian theo cả hai hướng.
, cho mọi số nguyên
, cho mọi số nguyên
Bước 10
Liệt kê tất cả các đáp án.
, cho mọi số nguyên