Nhập bài toán...
Lượng giác Ví dụ
Bước 1
Bước 1.1
Chia mỗi số hạng trong cho .
Bước 1.2
Rút gọn vế trái.
Bước 1.2.1
Triệt tiêu thừa số chung .
Bước 1.2.1.1
Triệt tiêu thừa số chung.
Bước 1.2.1.2
Chia cho .
Bước 1.3
Rút gọn vế phải.
Bước 1.3.1
Di chuyển dấu trừ ra phía trước của phân số.
Bước 2
Lấy cosin nghịch đảo của cả hai vế của phương trình để trích xuất từ trong cosin.
Bước 3
Bước 3.1
Tính .
Bước 4
Bước 4.1
Chia mỗi số hạng trong cho .
Bước 4.2
Rút gọn vế trái.
Bước 4.2.1
Triệt tiêu thừa số chung .
Bước 4.2.1.1
Triệt tiêu thừa số chung.
Bước 4.2.1.2
Chia cho .
Bước 4.3
Rút gọn vế phải.
Bước 4.3.1
Chia cho .
Bước 5
Hàm cosin âm trong góc phần tư thứ hai và thứ ba. Để tìm đáp án thứ hai, hãy trừ góc tham chiếu từ để tìm đáp án trong góc phần tư thứ ba.
Bước 6
Bước 6.1
Rút gọn.
Bước 6.1.1
Nhân với .
Bước 6.1.2
Trừ khỏi .
Bước 6.2
Chia mỗi số hạng trong cho và rút gọn.
Bước 6.2.1
Chia mỗi số hạng trong cho .
Bước 6.2.2
Rút gọn vế trái.
Bước 6.2.2.1
Triệt tiêu thừa số chung .
Bước 6.2.2.1.1
Triệt tiêu thừa số chung.
Bước 6.2.2.1.2
Chia cho .
Bước 6.2.3
Rút gọn vế phải.
Bước 6.2.3.1
Chia cho .
Bước 7
Bước 7.1
Chu kỳ của hàm số có thể được tính bằng .
Bước 7.2
Thay thế với trong công thức cho chu kỳ.
Bước 7.3
Giá trị tuyệt đối là khoảng cách giữa một số và số 0. Khoảng cách giữa và là .
Bước 7.4
Triệt tiêu thừa số chung của và .
Bước 7.4.1
Đưa ra ngoài .
Bước 7.4.2
Triệt tiêu các thừa số chung.
Bước 7.4.2.1
Đưa ra ngoài .
Bước 7.4.2.2
Triệt tiêu thừa số chung.
Bước 7.4.2.3
Viết lại biểu thức.
Bước 8
Chu kỳ của hàm là nên các giá trị sẽ lặp lại sau mỗi radian theo cả hai hướng.
, cho mọi số nguyên