Nhập bài toán...
Lượng giác Ví dụ
Bước 1
Lấy cosin nghịch đảo của cả hai vế của phương trình để trích xuất từ trong cosin.
Bước 2
Bước 2.1
Giá trị chính xác của là .
Bước 3
Bước 3.1
Chia mỗi số hạng trong cho .
Bước 3.2
Rút gọn vế trái.
Bước 3.2.1
Triệt tiêu thừa số chung .
Bước 3.2.1.1
Triệt tiêu thừa số chung.
Bước 3.2.1.2
Chia cho .
Bước 3.3
Rút gọn vế phải.
Bước 3.3.1
Chia cho .
Bước 4
Hàm cosin dương ở góc phần tư thứ nhất và thứ tư. Để tìm đáp án thứ hai, hãy trừ góc tham chiếu khỏi để tìm đáp án trong góc phần tư thứ tư.
Bước 5
Bước 5.1
Rút gọn.
Bước 5.1.1
Nhân với .
Bước 5.1.2
Cộng và .
Bước 5.2
Chia mỗi số hạng trong cho và rút gọn.
Bước 5.2.1
Chia mỗi số hạng trong cho .
Bước 5.2.2
Rút gọn vế trái.
Bước 5.2.2.1
Triệt tiêu thừa số chung .
Bước 5.2.2.1.1
Triệt tiêu thừa số chung.
Bước 5.2.2.1.2
Chia cho .
Bước 5.2.3
Rút gọn vế phải.
Bước 5.2.3.1
Triệt tiêu thừa số chung của và .
Bước 5.2.3.1.1
Đưa ra ngoài .
Bước 5.2.3.1.2
Triệt tiêu các thừa số chung.
Bước 5.2.3.1.2.1
Đưa ra ngoài .
Bước 5.2.3.1.2.2
Triệt tiêu thừa số chung.
Bước 5.2.3.1.2.3
Viết lại biểu thức.
Bước 6
Bước 6.1
Chu kỳ của hàm số có thể được tính bằng .
Bước 6.2
Thay thế với trong công thức cho chu kỳ.
Bước 6.3
Giá trị tuyệt đối là khoảng cách giữa một số và số 0. Khoảng cách giữa và là .
Bước 6.4
Triệt tiêu thừa số chung của và .
Bước 6.4.1
Đưa ra ngoài .
Bước 6.4.2
Triệt tiêu các thừa số chung.
Bước 6.4.2.1
Đưa ra ngoài .
Bước 6.4.2.2
Triệt tiêu thừa số chung.
Bước 6.4.2.3
Viết lại biểu thức.
Bước 7
Chu kỳ của hàm là nên các giá trị sẽ lặp lại sau mỗi radian theo cả hai hướng.
, cho mọi số nguyên
Bước 8
Hợp nhất các câu trả lời.
, cho mọi số nguyên