Nhập bài toán...
Lượng giác Ví dụ
Bước 1
Thay thế bằng .
Bước 2
Bước 2.1
Cộng và .
Bước 2.2
Phân tích thành thừa số bằng cách nhóm.
Bước 2.2.1
Sắp xếp lại các số hạng.
Bước 2.2.2
Đối với đa thức có dạng , hãy viết lại số hạng ở giữa là tổng của hai số hạng có tích là và có tổng là .
Bước 2.2.2.1
Nhân với .
Bước 2.2.2.2
Viết lại ở dạng cộng
Bước 2.2.2.3
Áp dụng thuộc tính phân phối.
Bước 2.2.3
Đưa ước số chung lớn nhất từ từng nhóm ra ngoài.
Bước 2.2.3.1
Nhóm hai số hạng đầu tiên và hai số hạng cuối.
Bước 2.2.3.2
Đưa ước số chung lớn nhất (ƯCLN) từ từng nhóm ra ngoài.
Bước 2.2.4
Phân tích đa thức thành thừa số bằng cách đưa ước số chung lớn nhất ra ngoài, .
Bước 2.3
Nếu bất kỳ thừa số riêng lẻ nào ở vế trái của phương trình bằng , toàn bộ biểu thức sẽ bằng .
Bước 2.4
Đặt bằng và giải tìm .
Bước 2.4.1
Đặt bằng với .
Bước 2.4.2
Giải để tìm .
Bước 2.4.2.1
Cộng cho cả hai vế của phương trình.
Bước 2.4.2.2
Chia mỗi số hạng trong cho và rút gọn.
Bước 2.4.2.2.1
Chia mỗi số hạng trong cho .
Bước 2.4.2.2.2
Rút gọn vế trái.
Bước 2.4.2.2.2.1
Chia hai giá trị âm cho nhau sẽ có kết quả là một giá trị dương.
Bước 2.4.2.2.2.2
Chia cho .
Bước 2.4.2.2.3
Rút gọn vế phải.
Bước 2.4.2.2.3.1
Chia cho .
Bước 2.4.2.3
Lấy cosin nghịch đảo của cả hai vế của phương trình để trích xuất từ trong cosin.
Bước 2.4.2.4
Rút gọn vế phải.
Bước 2.4.2.4.1
Giá trị chính xác của là .
Bước 2.4.2.5
Hàm cosin âm trong góc phần tư thứ hai và thứ ba. Để tìm đáp án thứ hai, hãy trừ góc tham chiếu từ để tìm đáp án trong góc phần tư thứ ba.
Bước 2.4.2.6
Trừ khỏi .
Bước 2.4.2.7
Tìm chu kỳ của .
Bước 2.4.2.7.1
Chu kỳ của hàm số có thể được tính bằng .
Bước 2.4.2.7.2
Thay thế với trong công thức cho chu kỳ.
Bước 2.4.2.7.3
Giá trị tuyệt đối là khoảng cách giữa một số và số 0. Khoảng cách giữa và là .
Bước 2.4.2.7.4
Chia cho .
Bước 2.4.2.8
Chu kỳ của hàm là nên các giá trị sẽ lặp lại sau mỗi radian theo cả hai hướng.
, cho mọi số nguyên
, cho mọi số nguyên
, cho mọi số nguyên
Bước 2.5
Đặt bằng và giải tìm .
Bước 2.5.1
Đặt bằng với .
Bước 2.5.2
Giải để tìm .
Bước 2.5.2.1
Cộng cho cả hai vế của phương trình.
Bước 2.5.2.2
Khoảng biến thiên của cosin là . Vì không nằm trong khoảng biến thiên này, nên không có đáp án.
Không có đáp án
Không có đáp án
Không có đáp án
Bước 2.6
Đáp án cuối cùng là tất cả các giá trị làm cho đúng.
, cho mọi số nguyên
, cho mọi số nguyên