Lượng giác Ví dụ

Giải x sin(x)^2-cos(x)^2=( căn bậc hai của 3)/2
Bước 1
Trừ khỏi cả hai vế của phương trình.
Bước 2
Thay thế bằng dựa trên đẳng thức .
Bước 3
Trừ khỏi .
Bước 4
Sắp xếp lại đa thức.
Bước 5
Di chuyển tất cả các số hạng không chứa sang vế phải của phương trình.
Nhấp để xem thêm các bước...
Bước 5.1
Trừ khỏi cả hai vế của phương trình.
Bước 5.2
Cộng cho cả hai vế của phương trình.
Bước 6
Chia mỗi số hạng trong cho và rút gọn.
Nhấp để xem thêm các bước...
Bước 6.1
Chia mỗi số hạng trong cho .
Bước 6.2
Rút gọn vế trái.
Nhấp để xem thêm các bước...
Bước 6.2.1
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 6.2.1.1
Triệt tiêu thừa số chung.
Bước 6.2.1.2
Chia cho .
Bước 6.3
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 6.3.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 6.3.1.1
Chia hai giá trị âm cho nhau sẽ có kết quả là một giá trị dương.
Bước 6.3.1.2
Nhân tử số với nghịch đảo của mẫu số.
Bước 6.3.1.3
Di chuyển dấu trừ ra phía trước của phân số.
Bước 6.3.1.4
Nhân .
Nhấp để xem thêm các bước...
Bước 6.3.1.4.1
Nhân với .
Bước 6.3.1.4.2
Nhân với .
Bước 7
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Bước 8
Rút gọn .
Nhấp để xem thêm các bước...
Bước 8.1
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 8.2
Viết mỗi biểu thức với mẫu số chung là , bằng cách nhân từng biểu thức với một thừa số thích hợp của .
Nhấp để xem thêm các bước...
Bước 8.2.1
Nhân với .
Bước 8.2.2
Nhân với .
Bước 8.3
Kết hợp các tử số trên mẫu số chung.
Bước 8.4
Viết lại ở dạng .
Bước 8.5
Rút gọn mẫu số.
Nhấp để xem thêm các bước...
Bước 8.5.1
Viết lại ở dạng .
Bước 8.5.2
Đưa các số hạng dưới dấu căn ra ngoài, giả sử đó là các số thực dương.
Bước 9
Đáp án hoàn chỉnh là kết quả của cả hai phần dương và âm của đáp án.
Nhấp để xem thêm các bước...
Bước 9.1
Đầu tiên, sử dụng giá trị dương của để tìm đáp án đầu tiên.
Bước 9.2
Tiếp theo, sử dụng giá trị âm của để tìm đáp án thứ hai.
Bước 9.3
Đáp án hoàn chỉnh là kết quả của cả hai phần dương và âm của đáp án.
Bước 10
Lập từng đáp án để giải tìm .
Bước 11
Giải tìm trong .
Nhấp để xem thêm các bước...
Bước 11.1
Lấy cosin nghịch đảo của cả hai vế của phương trình để trích xuất từ trong cosin.
Bước 11.2
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 11.2.1
Tính .
Bước 11.3
Hàm cosin dương ở góc phần tư thứ nhất và thứ tư. Để tìm đáp án thứ hai, hãy trừ góc tham chiếu khỏi để tìm đáp án trong góc phần tư thứ tư.
Bước 11.4
Rút gọn .
Nhấp để xem thêm các bước...
Bước 11.4.1
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 11.4.2
Kết hợp các phân số.
Nhấp để xem thêm các bước...
Bước 11.4.2.1
Kết hợp .
Bước 11.4.2.2
Kết hợp các tử số trên mẫu số chung.
Bước 11.4.3
Rút gọn tử số.
Nhấp để xem thêm các bước...
Bước 11.4.3.1
Nhân với .
Bước 11.4.3.2
Trừ khỏi .
Bước 11.5
Tìm chu kỳ của .
Nhấp để xem thêm các bước...
Bước 11.5.1
Chu kỳ của hàm số có thể được tính bằng .
Bước 11.5.2
Thay thế với trong công thức cho chu kỳ.
Bước 11.5.3
Giá trị tuyệt đối là khoảng cách giữa một số và số 0. Khoảng cách giữa .
Bước 11.5.4
Chia cho .
Bước 11.6
Chu kỳ của hàm nên các giá trị sẽ lặp lại sau mỗi radian theo cả hai hướng.
, cho mọi số nguyên
, cho mọi số nguyên
Bước 12
Giải tìm trong .
Nhấp để xem thêm các bước...
Bước 12.1
Lấy cosin nghịch đảo của cả hai vế của phương trình để trích xuất từ trong cosin.
Bước 12.2
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 12.2.1
Tính .
Bước 12.3
Hàm cosin âm trong góc phần tư thứ hai và thứ ba. Để tìm đáp án thứ hai, hãy trừ góc tham chiếu từ để tìm đáp án trong góc phần tư thứ ba.
Bước 12.4
Rút gọn .
Nhấp để xem thêm các bước...
Bước 12.4.1
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 12.4.2
Kết hợp các phân số.
Nhấp để xem thêm các bước...
Bước 12.4.2.1
Kết hợp .
Bước 12.4.2.2
Kết hợp các tử số trên mẫu số chung.
Bước 12.4.3
Rút gọn tử số.
Nhấp để xem thêm các bước...
Bước 12.4.3.1
Nhân với .
Bước 12.4.3.2
Trừ khỏi .
Bước 12.5
Tìm chu kỳ của .
Nhấp để xem thêm các bước...
Bước 12.5.1
Chu kỳ của hàm số có thể được tính bằng .
Bước 12.5.2
Thay thế với trong công thức cho chu kỳ.
Bước 12.5.3
Giá trị tuyệt đối là khoảng cách giữa một số và số 0. Khoảng cách giữa .
Bước 12.5.4
Chia cho .
Bước 12.6
Chu kỳ của hàm nên các giá trị sẽ lặp lại sau mỗi radian theo cả hai hướng.
, cho mọi số nguyên
, cho mọi số nguyên
Bước 13
Liệt kê tất cả các đáp án.
, cho mọi số nguyên
Bước 14
Hợp nhất các đáp án.
Nhấp để xem thêm các bước...
Bước 14.1
Hợp nhất để .
, cho mọi số nguyên
Bước 14.2
Hợp nhất để .
, cho mọi số nguyên
, cho mọi số nguyên