Lượng giác Ví dụ

Bước 1
Chia mỗi số hạng trong cho và rút gọn.
Nhấp để xem thêm các bước...
Bước 1.1
Chia mỗi số hạng trong cho .
Bước 1.2
Rút gọn vế trái.
Nhấp để xem thêm các bước...
Bước 1.2.1
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 1.2.1.1
Triệt tiêu thừa số chung.
Bước 1.2.1.2
Chia cho .
Bước 1.3
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 1.3.1
Triệt tiêu thừa số chung của .
Nhấp để xem thêm các bước...
Bước 1.3.1.1
Đưa ra ngoài .
Bước 1.3.1.2
Triệt tiêu các thừa số chung.
Nhấp để xem thêm các bước...
Bước 1.3.1.2.1
Đưa ra ngoài .
Bước 1.3.1.2.2
Triệt tiêu thừa số chung.
Bước 1.3.1.2.3
Viết lại biểu thức.
Bước 2
Lấy nghịch đảo cotang của cả hai vế của phương trình để trích xuất từ trong hàm cotang.
Bước 3
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 3.1
Tính .
Bước 4
Di chuyển tất cả các số hạng không chứa sang vế phải của phương trình.
Nhấp để xem thêm các bước...
Bước 4.1
Trừ khỏi cả hai vế của phương trình.
Bước 4.2
Trừ khỏi .
Bước 5
Hàm cotang dương ở góc phần tư thứ nhất và thứ ba. Để tìm đáp án thứ hai, hãy thêm góc tham chiếu từ để tìm đáp án trong góc phần tư thứ tư.
Bước 6
Giải tìm .
Nhấp để xem thêm các bước...
Bước 6.1
Cộng .
Bước 6.2
Di chuyển tất cả các số hạng không chứa sang vế phải của phương trình.
Nhấp để xem thêm các bước...
Bước 6.2.1
Trừ khỏi cả hai vế của phương trình.
Bước 6.2.2
Trừ khỏi .
Bước 7
Tìm chu kỳ của .
Nhấp để xem thêm các bước...
Bước 7.1
Chu kỳ của hàm số có thể được tính bằng .
Bước 7.2
Thay thế với trong công thức cho chu kỳ.
Bước 7.3
Giá trị tuyệt đối là khoảng cách giữa một số và số 0. Khoảng cách giữa .
Bước 7.4
Chia cho .
Bước 8
Cộng vào mọi góc âm để có được các góc dương.
Nhấp để xem thêm các bước...
Bước 8.1
Cộng vào để tìm góc dương.
Bước 8.2
Thay thế bằng giá trị xấp xỉ thập phân.
Bước 8.3
Trừ khỏi .
Bước 8.4
Liệt kê các góc mới.
Bước 9
Chu kỳ của hàm nên các giá trị sẽ lặp lại sau mỗi radian theo cả hai hướng.
, cho mọi số nguyên
Bước 10
Hợp nhất để .
, cho mọi số nguyên