Nhập bài toán...
Lượng giác Ví dụ
Bước 1
Kết hợp và .
Bước 2
Đối với bất kỳ , các tiệm cận đứng xảy ra tại , trong đó là một số nguyên. Sử dụng chu kì cơ bản cho , , để tìm các tiệm cận đứng cho . Đặt phần bên trong của hàm tang, , cho bằng để tìm nơi tiệm cận đứng xảy ra cho .
Bước 3
Bước 3.1
Vì biểu thức trên mỗi vế của phương trình có mẫu số giống nhau, nên tử số phải bằng nhau.
Bước 3.2
Chia mỗi số hạng trong cho và rút gọn.
Bước 3.2.1
Chia mỗi số hạng trong cho .
Bước 3.2.2
Rút gọn vế trái.
Bước 3.2.2.1
Triệt tiêu thừa số chung .
Bước 3.2.2.1.1
Triệt tiêu thừa số chung.
Bước 3.2.2.1.2
Chia cho .
Bước 3.2.3
Rút gọn vế phải.
Bước 3.2.3.1
Triệt tiêu thừa số chung .
Bước 3.2.3.1.1
Triệt tiêu thừa số chung.
Bước 3.2.3.1.2
Chia cho .
Bước 4
Đặt phần bên trong hàm tang bằng .
Bước 5
Bước 5.1
Vì biểu thức trên mỗi vế của phương trình có mẫu số giống nhau, nên tử số phải bằng nhau.
Bước 5.2
Chia mỗi số hạng trong cho và rút gọn.
Bước 5.2.1
Chia mỗi số hạng trong cho .
Bước 5.2.2
Rút gọn vế trái.
Bước 5.2.2.1
Triệt tiêu thừa số chung .
Bước 5.2.2.1.1
Triệt tiêu thừa số chung.
Bước 5.2.2.1.2
Chia cho .
Bước 5.2.3
Rút gọn vế phải.
Bước 5.2.3.1
Triệt tiêu thừa số chung .
Bước 5.2.3.1.1
Triệt tiêu thừa số chung.
Bước 5.2.3.1.2
Viết lại biểu thức.
Bước 6
Chu kỳ cơ bản cho sẽ xảy ra tại , nơi và là các tiệm cận đứng.
Bước 7
Bước 7.1
xấp xỉ , là một số dương, nên ta loại bỏ dấu giá trị tuyệt đối
Bước 7.2
Nhân tử số với nghịch đảo của mẫu số.
Bước 7.3
Triệt tiêu thừa số chung .
Bước 7.3.1
Triệt tiêu thừa số chung.
Bước 7.3.2
Viết lại biểu thức.
Bước 8
Các tiệm cận đứng cho xảy ra tại , và mỗi , trong đó là một số nguyên.
Bước 9
Tang chỉ có các tiệm cận đứng.
Không có các tiệm cận ngang
Không có các tiệm cận xiên
Các tiệm cận đứng: nơi là một số nguyên
Bước 10