Lượng giác Ví dụ

Giải x cos(x)^2-9cos(x)-1=0
Bước 1
Thay bằng .
Bước 2
Sử dụng công thức bậc hai để tìm các đáp án.
Bước 3
Thay các giá trị , , và vào công thức bậc hai và giải tìm .
Bước 4
Rút gọn.
Nhấp để xem thêm các bước...
Bước 4.1
Rút gọn tử số.
Nhấp để xem thêm các bước...
Bước 4.1.1
Nâng lên lũy thừa .
Bước 4.1.2
Nhân .
Nhấp để xem thêm các bước...
Bước 4.1.2.1
Nhân với .
Bước 4.1.2.2
Nhân với .
Bước 4.1.3
Cộng .
Bước 4.2
Nhân với .
Bước 5
Câu trả lời cuối cùng là sự kết hợp của cả hai đáp án.
Bước 6
Thay bằng .
Bước 7
Lập từng đáp án để giải tìm .
Bước 8
Giải tìm trong .
Nhấp để xem thêm các bước...
Bước 8.1
Khoảng biến thiên của cosin là . Vì không nằm trong khoảng biến thiên này, nên không có đáp án.
Không có đáp án
Không có đáp án
Bước 9
Giải tìm trong .
Nhấp để xem thêm các bước...
Bước 9.1
Lấy cosin nghịch đảo của cả hai vế của phương trình để trích xuất từ trong cosin.
Bước 9.2
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 9.2.1
Tính .
Bước 9.3
Hàm cosin dương ở góc phần tư thứ nhất và thứ tư. Để tìm đáp án thứ hai, hãy trừ góc tham chiếu khỏi để tìm đáp án trong góc phần tư thứ tư.
Bước 9.4
Giải tìm .
Nhấp để xem thêm các bước...
Bước 9.4.1
Loại bỏ các dấu ngoặc đơn.
Bước 9.4.2
Rút gọn .
Nhấp để xem thêm các bước...
Bước 9.4.2.1
Nhân với .
Bước 9.4.2.2
Trừ khỏi .
Bước 9.5
Tìm chu kỳ của .
Nhấp để xem thêm các bước...
Bước 9.5.1
Chu kỳ của hàm số có thể được tính bằng .
Bước 9.5.2
Thay thế với trong công thức cho chu kỳ.
Bước 9.5.3
Giá trị tuyệt đối là khoảng cách giữa một số và số 0. Khoảng cách giữa .
Bước 9.5.4
Chia cho .
Bước 9.6
Chu kỳ của hàm nên các giá trị sẽ lặp lại sau mỗi radian theo cả hai hướng.
, cho mọi số nguyên
, cho mọi số nguyên
Bước 10
Liệt kê tất cả các đáp án.
, cho mọi số nguyên