Lượng giác Ví dụ

Giải ? căn bậc hai của 3sin(x)=cos(x)
Bước 1
Chia mỗi số hạng trong phương trình cho .
Bước 2
Tách các phân số.
Bước 3
Quy đổi từ sang .
Bước 4
Chia cho .
Bước 5
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 5.1
Triệt tiêu thừa số chung.
Bước 5.2
Viết lại biểu thức.
Bước 6
Chia mỗi số hạng trong cho và rút gọn.
Nhấp để xem thêm các bước...
Bước 6.1
Chia mỗi số hạng trong cho .
Bước 6.2
Rút gọn vế trái.
Nhấp để xem thêm các bước...
Bước 6.2.1
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 6.2.1.1
Triệt tiêu thừa số chung.
Bước 6.2.1.2
Chia cho .
Bước 6.3
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 6.3.1
Nhân với .
Bước 6.3.2
Kết hợp và rút gọn mẫu số.
Nhấp để xem thêm các bước...
Bước 6.3.2.1
Nhân với .
Bước 6.3.2.2
Nâng lên lũy thừa .
Bước 6.3.2.3
Nâng lên lũy thừa .
Bước 6.3.2.4
Sử dụng quy tắc lũy thừa để kết hợp các số mũ.
Bước 6.3.2.5
Cộng .
Bước 6.3.2.6
Viết lại ở dạng .
Nhấp để xem thêm các bước...
Bước 6.3.2.6.1
Sử dụng để viết lại ở dạng .
Bước 6.3.2.6.2
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 6.3.2.6.3
Kết hợp .
Bước 6.3.2.6.4
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 6.3.2.6.4.1
Triệt tiêu thừa số chung.
Bước 6.3.2.6.4.2
Viết lại biểu thức.
Bước 6.3.2.6.5
Tính số mũ.
Bước 7
Lấy nghịch đảo tang của cả hai vế của phương trình để trích xuất từ trong hàm tang.
Bước 8
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 8.1
Giá trị chính xác của .
Bước 9
Hàm tang dương trong góc phần tư thứ nhất và thứ ba. Để tìm đáp án thứ hai, hãy cộng góc tham chiếu từ để tìm đáp án trong góc phần tư thứ tư.
Bước 10
Rút gọn .
Nhấp để xem thêm các bước...
Bước 10.1
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 10.2
Kết hợp các phân số.
Nhấp để xem thêm các bước...
Bước 10.2.1
Kết hợp .
Bước 10.2.2
Kết hợp các tử số trên mẫu số chung.
Bước 10.3
Rút gọn tử số.
Nhấp để xem thêm các bước...
Bước 10.3.1
Di chuyển sang phía bên trái của .
Bước 10.3.2
Cộng .
Bước 11
Tìm chu kỳ của .
Nhấp để xem thêm các bước...
Bước 11.1
Chu kỳ của hàm số có thể được tính bằng .
Bước 11.2
Thay thế với trong công thức cho chu kỳ.
Bước 11.3
Giá trị tuyệt đối là khoảng cách giữa một số và số 0. Khoảng cách giữa .
Bước 11.4
Chia cho .
Bước 12
Chu kỳ của hàm nên các giá trị sẽ lặp lại sau mỗi radian theo cả hai hướng.
, cho mọi số nguyên
Bước 13
Hợp nhất các câu trả lời.
, cho mọi số nguyên