Nhập bài toán...
Lượng giác Ví dụ
Bước 1
Bước 1.1
Tìm nơi biểu thức không xác định.
Bước 1.2
Bỏ qua logarit, xét hàm số hữu tỉ trong đó là bậc của tử số và là bậc của mẫu số.
1. Nếu , thì trục x, , là tiệm cận ngang.
2. Nếu , thì tiệm cận ngang là đường .
3. Nếu , thì không có tiệm cận ngang (có một tiệm cận xiên).
Bước 1.3
Tìm và .
Bước 1.4
Vì , trục x, , là tiệm cận ngang.
Bước 1.5
Không có tiệm cận xiên nào tồn tại cho các hàm logarit và hàm lượng giác.
Không có các tiệm cận xiên
Bước 1.6
Đây là tập hợp của tất cả các tiệm cận.
Các tiệm cận đứng:
Các tiệm cận ngang:
Các tiệm cận đứng:
Các tiệm cận ngang:
Bước 2
Bước 2.1
Thay thế biến bằng trong biểu thức.
Bước 2.2
Rút gọn kết quả.
Bước 2.2.1
Chia cho .
Bước 2.2.2
Một mũ bất kỳ số nào là một.
Bước 2.2.3
Logarit tự nhiên của là .
Bước 2.2.4
Câu trả lời cuối cùng là .
Bước 2.3
Quy đổi thành số thập phân.
Bước 3
Bước 3.1
Thay thế biến bằng trong biểu thức.
Bước 3.2
Rút gọn kết quả.
Bước 3.2.1
Khai triển bằng cách di chuyển ra bên ngoài lôgarit.
Bước 3.2.2
Triệt tiêu thừa số chung .
Bước 3.2.2.1
Triệt tiêu thừa số chung.
Bước 3.2.2.2
Chia cho .
Bước 3.2.3
Câu trả lời cuối cùng là .
Bước 3.3
Quy đổi thành số thập phân.
Bước 4
Bước 4.1
Thay thế biến bằng trong biểu thức.
Bước 4.2
Rút gọn kết quả.
Bước 4.2.1
Viết lại ở dạng .
Bước 4.2.2
Rút gọn bằng cách di chuyển trong logarit.
Bước 4.2.3
Nhân các số mũ trong .
Bước 4.2.3.1
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 4.2.3.2
Kết hợp và .
Bước 4.2.4
Câu trả lời cuối cùng là .
Bước 4.3
Quy đổi thành số thập phân.
Bước 5
Hàm logarit có thể được vẽ bằng tiệm cận đứng tại và các điểm .
Tiệm cận đứng:
Bước 6